
How To Use the Smalltalk-76 System

Learning Research Group
October 1979

(if you find errors, etc, inform Adele Goldberg)

For Internal Xerox Use Only

XEROX
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Table of Contents

Section Page

1. Getting Started, Text Editing, and Printing 1

2. The Smalltalk-76 User Interface: Text, Picture,

Browsing and Project Windows; keyboard map 9

3. Defining and Debugging Class Definitions 20

4. Printing and Filing out from Smalltalk 25

5. Smalltalk Objects 27

6. Scheduling Round-Robin Fashion 32

I. Getting Started, Text
Editing, and Printing

This and subsequent documentation assumes you are familiar with the Alto, Ethernet, and

mouse pointing device. If not, you should obtain separate documentation and read it before

continuing with this material. This document does not purport to teach Smalltalk, the

programming language; it only presents the user interface.

Getting Small

Your first step is to set up your own Smalltalk disk. The easiest way to do this is by copying

the Basic Smalltalk Disk provided for Smalltalk courses. The course disk in Adele’s office, or

the Basic Smalltalk disk usually available in Dan Ingalls’ office, contains all the files you will

need to run Smalltalk, along with FTP (for transferring files from one place to another over the

Ethernet), and Empress (for printing files in hardcopy form).

All important Smalltalk-related files are kept on the Ivy file server in a directory named

<Smalltalk>. The latest version of the system is always available in this directory under the

name Small.boot; there is also a corresponding symbol file called Smalltalk.syms, containing

symbol-table information needed by the Swat debugging utility. These two files should always

be retrieved together. An Alto command file for this purpose is kept in the [Ivy]<Smalltalk>

directory as GetSmall.cm: if you keep a copy of this file on your disk, you can always obtain

the latest Smalltalk release by typing

@GetSmall cr

to the Alto Executive. You should be running under OS-16. Smalltalk’s prior to version 5.5

run only under OS 15.

Whenever a new version of Smalltalk is released, the previous version is saved on the files

OldSmall.boot and OldSmalltalk.syms -- if you encounter difficulties with a new release, you can

back up to the previous version by retrieving these files with the command file GetOldSmall.cm.

If you have an Alto II with the XM, or Extended Memory feature, you can use the special XM

version of Smalltalk, designed to make use of the extra memory available. This version, stored

on XMSmall.boot and XMSmalltalk.syms and accessed via GetXMSmall.cm, gives noticeably

better performance than the standard release, but is updated less frequently and often lags in

incorporating new features and corrective changes.

Sources are accessed from the Woodstock server located in Palo Alto, California. A local copy

can be obtained by using FTP to get [IVY]<SMALLTALK> Smalltalk.Sources, and then

executing in Smalltalk

2

user sourcesTo: (dp0 file: ’Smalltalk.Sources’) changesOnly: true.

The code to do both the FTP and the message to user can be found in the user workspace

window as described later.

Entering and Leaving SMALLTALK

To enter Smalltalk from the Alto Executive, type

Resume Small.boot cr

To leave Smalltalk and return to the Executive, evaluate the expression user quit

either by typing it into the dialog window, as described below under THE DIALOG WINDOW; by

selecting and executing it in a code window or code pane (see the section: CODE WINDOWS,

Execution and Compilation); or by selecting the command quit in the project view menu (see

section: PROJECT VIEW WINDOWS in Section 2). A line containing this message is included for

your convenience in the "UserView workspace" window provided in the Smalltalk release

(initially, the upper right window on the screen). Whenever you quit Smalltalk in this way, the

current state of your working environment is saved on the file Small.boot; the next time you

resume Small.boot, you will find the Smalltalk system in almost the state in which you left it

(files and ether are reset). Thus there is no need to save your work at the end of one session or

to restore your working context at the beginning of the next: you simply quit and resume, with

no break in continuity. (Of course, if you retrieve a fresh copy of the Smalltalk release from

Ivy, your old working environment will be lost. If you have made changes to the system that

you wish to save, you must explicitly file them out before obtaining the fresh release and file

them back into the new copy--see Section 4.)

Windows and Menus

All communication with Smalltalk is done through a window. Windows come in various flavors,

each with its own properties and capabilities, and can be freely created, destroyed, and moved

around on the screen. Only one window is "awake" at any given time. To "wake up" a

window, place the cursor into it and press any of the mouse buttons: the window will redisplay

its image on the screen to signify that it is awake, possibly overlaying and completely or partially

hiding some of the other windows; the window that was previously active will "go to sleep."

(If any of the "flashers" at the top of the screen are active, Smalltalk is busy doing something

else, such as disk management, and may not hear your wakeup signal immediately--persevere.)

When you obtain a fresh copy of Smalltalk from Ivy, you will find three windows initially

displayed on the screen. Prominent in the center is a browse window (which is a Smalltalk object

of class BrowseWindow); in the upper left corner is a dialog window (class Dispframe);

at the upper right, overlapping and partially hiding the browse window, is a code window (class

CodeWindow) titled "UserView workspace". When you have learned how to use the browse

window, you can use it to inspect the code that drives any of these windows (including the

browse window itself) by browsing the appropriate class. (See Section 2).

3

THE DIALOG WINDOW

Those who have previous experience with conventional interactive language systems will find the

behavior of the dialog window the most familiar. (Note that its text is not editable and

therefore its use is discouraged in favor of editing and executing in a code window.) Enter the

window with the mouse and press any of the mouse buttons. The window will refresh its image

and prompt you with the character � to let you know it is listening. You can now proceed to

hold an interactive dialog with Smalltalk. Keeping the cursor in the dialog window, type any

Smalltalk expression, terminated by a line-feed character, which will appear as the Smalltalk

graphic � ("do-it"). Smalltalk will respond with the value of the expression you typed, and

will prompt you with another � . Try typing 3 + 4� into the dialog window--you will not be

disappointed. If you type an expression ending with a period, it will be evaluated strictly for

effect : the value it returns will be discarded and the default value nil displayed instead. This is

useful for the cases in which either no result is desired (such as clearing the screen) or the result

has a very extensive response to the message print which is not desired.

The dialog window offers limited editing facilities for correcting typing errors: backspace

cancels the last character, control-w cancels the last word. If the window becomes full, it will

scroll up automatically to make room for another line of dialog; there is no way to scroll down

in order to inspect something you typed earlier. To clear the dialog window, type control-x:

the window will become empty and prompt with a new � . If the cursor leaves the dialog

window, the window will continue listening to the keyboard (provided you don’t put it to sleep

by waking up another window), but will stop echoing the text you type in and will not respond

to the "do-it" character � . Reentering the dialog window will cause it to display all the text

you have typed since leaving the window, and to respond to any do-it’s this text may contain.

KEYBOARD/CHARACTER CORRESPONDENCES

Character Smalltalk KeyStroke Meaning

� ctrl a or ctrl , relational

� ctrl n or ctrl \ relational

� ctrl r or ctrl . relational

� ctrl f or ctrl = relational

� ctrl : remote evaluation

� ctrl / then only

� ctrl g or ctrl [subscript

� ctrl ’ literal

� ctrl _ or ctrl q return

� ctrl] point

� ctrl u or shift - high minus

4

CODE WINDOWS

Because they provide more flexible editing facilities, code windows are generally more

convenient than the dialog window for communicating with Smalltalk. As you become more

familiar with the system, you will probably find yourself using them more and more and the

dialog window less and less.

Scrolling

Move the mouse into the code window at the upper right titled "UserView workspace", and

press one of the mouse buttons. You will see the workspace window wake up, and the prompt

character � will disappear from the dialog window, signifying that that window has gone to

sleep. A scroll bar will appear at the left of the workspace window to show that the window is

awake and ready to respond. If you move the mouse out of the window, the scroll bar will go

away. This means that the window is not prepared to respond to your requests, although it will

remain awake until you wake up some other window -- when you reenter the window the scroll

bar will reappear. Move the mouse into the scroll bar: the cursor will change into an upward-

pointing arrow when you are in the right half of the scroll bar, a down arrow in the left half.

When you leave the scroll bar, the cursor will resume its normal form, a "northwest arrow."

Enter the scroll bar with the mouse and press the "red" (left or top) button. The line of text

directly opposite the cursor will jump to the top of the window, if you are in the right half of

the scroll bar (indicated by an up arrow cursor); the first line will move down to the cursor

position, if you are in the left half of the scroll bar (indicated by a down arrow cursor). The

window will continue to scroll repeatedly in this way as long as you hold down the button--you

can use the vertical position of the cursor within the scroll bar to control the speed at which the

window scrolls.

The small box within the scroll bar is a position indicator, whose vertical location shows the

location of the window’s visible contents relative to its text as a whole: the top of the scroll bar

represents the beginning of the text, the bottom represents the end. If you move the cursor into

the position indicator itself, the cursor will change to a small dot. By holding down the red

button and moving the mouse, you can then drag the position indicator to any desired location

within the scroll bar. When you release the button, the window will scroll to the corresponding

position in the text.

Selection (red mouse button)

Most operations in a code window are based on the idea of selecting a position or a passage in

the window’s displayed text and manipulating it in some way. The system identifies the passage

currently selected by highlighting it on the screen; if the selection is a position between

characters, it appears as a vertical bar at the appropriate location. Selections are made with the

red mouse button (left or top), according to the following conventions:

- To select a position between characters, simply point at the desired position and click the

button.

5

- To select a whole passage, point at the beginning of the passage, press and hold the

button, and move the cursor to the end of the passage before releasing the button.

- To select a single word, point anywhere within the word and click the button twice.

(Timing here is not relevant as no clock or timer is involved; what matters is the

sequencing of two clicks with the cursor pointing to the same location. Just give the

system enough time to notice the first click before executing the second one.) For

purposes of this rule, a word is any sequence of "tokenish" characters bounded by

nontokenish characters. (Tokenish characters are letters, digits, period, colon, and the

special Smalltalk characters "open colon" � and "high minus" � .) If you double click in

this manner at the space between words, the word selected is the one closest to the vertical

bar.

- To select a whole line, point at the beginning or end of the line and click twice. A line is

delimited by a carriage return which has no visible printing character. It may seem that

several "lines" are selected due to the automatic text wrap-around in a window.

- To select everything between a pair of matching left and right delimiters, point just inside

either delimiter and click twice. Delimiter pairs on which this will work are parentheses (

), square brackets [], angle brackets < >, curly braces { }, single (string) quotes ’ ’, and

double (comment) quotes " ".

Left delimiter takes precedence over the right one. That is, should you select between two

delimiters, the choice is the one on the left. For example,

(’ABCD’) EFGH’IJ’

If you select between the ’ and), the matching assumes you mean to pair single quote

marks; the selection is)EFGH .

- To select the last passage just typed from the keyboard, press the escape key.

Editing (yellow mouse bug menu and typing)

When the window is awake and contains the cursor, any text typed on the Alto keyboard will

automatically replace the current selection; if the selection is a position between characters, the

effect is to insert the typed text at that point. Pressing the delete key will delete the passage

currently selected; backspace deletes the character immediately preceding the current selection;

control-w deletes the word preceding the selection. (These last three conventions can also be

used to correct errors during type-in.) Further editing facilities are available through the code

window’s yellow-bug (middle mouse button) menu (i.e., press yellow bug, hold the button until

the item is selected and then release the button):

- The menu command cut deletes the current selection, and is equivalent to the delete key

on the keyboard.

- After a passage has been deleted or cut, it can be moved to another location by selecting

6

the new location and issuing the command paste.

- A piece of text can be copied to a new place without deleting it from its original location

by selecting the text to be copied, invoking the menu command copy, then selecting the

destination location and invoking paste.

- In general, the paste command replaces the current selection with a copy of the last piece

of text removed using the delete, cut or copy command, or text typed in from the

keyboard. Thus, to insert the same text in several places, select the first location and type

the desired text, then select each of the other locations in turn and invoke paste in each

place.

- After a passage is selected and replaced, the command again will find the next

occurrence of the same passage and repeat the replacement.

- The command undo rescinds the last delete or paste operation and returns the text to its

previous state.

These operations are not limited to a single window: for example, you can cut or copy a

passage from one window and paste it down in another.

Formatting (yellow mouse bug menu and control keys)

Some limited formatting capabilities are provided in the code window. The yellow-bug menu

includes the command align. Success selection of this command justifies the left margin, right

margin, both margins, or not both margins (centered text).

Font changes are made using control characters. Make a selection in the window, then type

ctrl 0 - ctrl 9 to select the font specified in DefaultTextStyle

ctrl i to select italics

ctrl b to select bold

ctrl - to select underlining

ctrl x resets to font 0, no bold, no italic

Italics, bold, and underlining are removed by typing: shift ctrl i, shift ctrl b, or shift ctrl -,

respectively. These changes are not made during type-in.

Execution and Compilation (yellow mouse bug menu)

A code window can be used to do anything you can do in the dialog window, with the added

advantage that you can edit your input with the facilities just described. To evaluate a piece of

text displayed in a code window as a Smalltalk expression, select the desired text using the

selection conventions given above, then issue the menu command doit. Smalltalk will black out

most of its screen while evaluating the expression. When the screen returns, the value of the

expression will be inserted after the expression.

7

Try this at your own Alto: with the UserView workspace window awake, select a convenient

location in the window and type 3 + 4. Then hit the escape key to select the text you have just

typed: it will be highlighted on the screen for identification. Now press the yellow mouse

button to display the menu, do not release the button until you have selected the command

doit, and then release the button. The expected result will appear adjacent to the text

previously selected; it will be selected so you can delete it immediately if you choose. The

result can also be placed in other positions in the text using the paste command.

The command compile in the code window’s yellow-bug menu is used to finalize the window’s

edited text and make it permanent. Every code window is associated with a Smalltalk message;

the window contains the method (program) for that message. The compile command

recompiles the method, incorporating the changes you have made as a permanent part of your

Smalltalk system. The menu command cancel wipes out all changes made since the last

compile, restoring the window’s text to its previous state.

The UserView workspace is a view of a message workspace in class UserView. Executing

compile will change that method in your Smalltalk system (but not in the sources stored on the

network).

Editing a Disk File

In order to create a code window displaying the contents of a new or old disk file, evaluate an

expression of the form

(dp0 file: ’filename’) edit.

or

f edit

where f is an object of class FileStream, either by typing in a dialog window, or typing and

selecting in a code window as described above. (Some caveats: since the file is stored internally

as a single String, editing can be rather slow and the size is limited to 16384 characters; when

you store (see below), the text is saved, but not the formatting.

When you issue this command, the last active window will go to sleep and the cursor will

assume the form of an origin cursor -- a right angle representing the new window’s top left

corner. Move the cursor to the desired position for this corner of the window, then press and

hold any of the three mouse buttons; the cursor will change to a corner cursor representing the

bottom right corner of the window. As long as you continue to hold the button, the new

window will display a flashing frame, with its top left corner at the location you have designated

and its lower right corner following the movements of the cursor. When you release the button

the window’s location will be frozen, its contents will be displayed, and the cursor, resuming its

normal form, will automatically be repositioned to the center of the window.

The window is a code window and therefore all editing is carried out as before. However, there

8

are two changes to the yellow bug menu. The compile and cancel commands are replaced by

get and put. To save your edits (but not your formats), select put; to retrieve the file

contents prior to your edits since the last put, select get.

Printing the Disk File

Printing is described in detail in Section 4. For now, in order to complete your assignment, you

can print the file by selecting the command print in the menu that appears when you hold

down the mouse’s blue button (right or bottom button). When the execution of the command is

completed, the file should have been sent to the printer. If it hasn’t, you can get out of

Smalltalk (by executing user quit) and print the file called window.press using Empress.

EDITING WINDOW TITLES

The titles to most windows are editable using selection and typing only. Invoking yellowbug

menu results in a simple flash of the title frame. Windows on to files do not have editable titles.

Document Editor

It is possible to prepare and print a document that integrates textual and pictorial images using

the Smalltalk document editor. Good printing and formatting capabilities are provided. The

explanation for using this editor is omitted from this documentation, however, because of the

changing nature of this experimental system. Look at classes organized under the category FPI

Packages.

9

2. The Smalltalk-76 User Interface:
Text, Picture, Browsing and Project
Windows

Windows and Menus

Most windows offer two different menus. The yellow (middle) mouse button activates a menu

of commands specific to the particular kind of window, representing operations the window

knows how to perform on its own contents as displayed on the screen; the "blue" button (the

one on the right or the bottom, depending on the kind of mouse you have) invokes a menu of

commands shared by all windows, which are used for manipulating the windows themselves on

the Alto screen. These "blue-bug" commands are discussed below. The yellow-bug commands

must be described separately with respect to each kind of window. We have already done so for

code windows and windows onto file streams (see section 1).

BLUE-BUG COMMANDS

For the most part, manipulation and positioning of windows on the Smalltalk display is done

through the blue-bug menu, which is the same for all kinds of windows. (Some of the more

exotic kinds of windows have their own blue-bug menus, which we will not discuss here; the

dialog window is rather special, and has no menus at all.) On the standard blue-bug menu are

the following commands:

under

frame

close

print

printbits

- under wakes up and brings to the top the "bottommost" window under the current

position of the cursor. This command is useful for getting your hands on a window that

has become "lost" under another window, which hides it completely. (You don’t need the

under command to wake up a window that is only partially obscured: simply enter the

visible portion of the window with the mouse and press one of the buttons.)

- frame is used for changing the size and location of a window. You must specify the

window’s new location in the following way. When you issue this command, the cursor

will assume the form of an origin cursor -- a right angle representing the new window’s

top left corner. Move the cursor to the desired position for this corner of the window,

then press and hold any of the three mouse buttons; the cursor will change to a corner

cursor representing the bottom right corner of the window. As long as you continue to

hold the button, the new window will display a flashing frame, with its top left corner at

the location you have designated and its lower right corner following the movements of

the cursor. When you release the button the window’s location will be frozen, its contents

10

will be displayed, and the cursor, resuming its normal form, will automatically be

repositioned to the center of the window.

- close destroys a window permanently and removes its image from the screen.

- print and printbits are both intended to generate press files containing a representation

of the window’s image as it appears on the screen. The difference between the two

commands is that printbits represents the window’s image in pure bit-map form,

whereas print uses a combination of graphical and text formats. For more details on

printing, see Section 4.

CREATING NEW WINDOWS

New windows can be created on the screen in a variety of ways, depending on the type of

window desired. All of them require that you specify the location of the new window on the

screen by the method described for the frame command in the window blue-bug menu.

You can create a CodeWindow for editing the code of any desired method by sending the

message edit: to the class in which the method is defined. For example, to edit the method for

message twiddle in class Mumble, evaluate

Mumble edit: �twiddle

Notice that the argument to this message is a unique-string, the selector for the desired method.

Similarly, to create a CodeWindow with a FilePane displaying the contents of file f,

evaluate

f edit

A new BrowseWindow (described in the next section) can be created with the expression

user browse

To create a NotifyWindow (see Section 3) containing the error diagnostic

Something is wrong

send the message

user notify: ’Something is wrong’

The argument is a string to be displayed in the notify window’s title area. (This message is used

in compiled code to report error conditions encountered at execution time. It can also be used

to place break pointers in a program as a debugging aide.)

To create an InspectWindow (see Section 3) for examining the internal state of a given

object, send the message inspect to the object. For example, to inspect the global symbol

table Smalltalk, evaluate

11

Smalltalk inspect

To create a new Window without having to specify its frame using the mouse, try

Window new frame: rect

where rect is an object of class Rectangle.

To use the framing method described above, create a window with

Window new newframe

In these last two cases, the window must be explicityly included in the window scheduler.

Execute

user schedule: <window object>

If you place the cursor in a position outside any window, and press yellow bug, then the menu

that appears contains several useful commands.

exit to overview

quit

open a subview

open a browser

open a workspace

reclaim

Select open a workspace to create a new codewindow such as that already described in

Section 1. You can edit the title to reflect the purpose of the workspace.

quit lets you leave Smalltalk and return to the Alto Operating System.

reclaim attempts to recompute space consumed by various activities that seem to leave

"garbage" about. It is intended for more expert users.

We will discuss the remaining commands in the section entitled Project View Windows.

EXAMPLE KINDS OF WINDOWS

Dialog Windows

Dialog windows were described in Section 1.

Code Windows An example of a code window is the UserView workspace which is displayed on

the screen of every new Smalltalk release for your convenience, to provide access to the editing

and execution facilities described in the preceding sections. Displayed in the workspace window

are a number of useful Smalltalk messages which you can execute simply by selecting them and

invoking the yellow-bug command doit. You can edit the contents of the window to include

12

any other messages you find yourself using frequently. If you need some blank space in which

to work, simply scroll the workspace window past the end of the displayed text.

You can delete all the text to obtain a blank workspace. Do not execute the compile

command. Doing so will cause all future copies of the workspace to be identical to the one in

which you executed compile.

Yellow-bug commands for text editing are

again

copy

cut

paste

doit

compile

undo

cancel

align

These were described in Section 1. If you examine the class definitions, you will find that a

CodeWindow keeps a reference to a CodePane, and that the yellow-bug menu, called

editmenu, is a field of a CodePane.

Picture Windows

Picture windows are objects of class BitRectEditor. They are used for "painting" pictures on

the Alto screen, and include facilities for filing and retrieving such pictures. The easiest way to

create such a window is to evaluate

BitRect new fromuser; edit.

You will be given the origin and corner cursors in order to specify the rectangular area for the

window. You will perceive a difference in defining the area (the rectangle you see as feedback

is not a blank white one). This reflects the fact that the window is initially transparent, not

opaque. Any screen information overlapping the picture window is included in the picture.

This is a way of "picking up" an image that can then be stored on a disk file. To understand

this use of transparency, create a picture window and then move it using the blue bug frame

command.

The edit message installs a BitRectEditor in the window scheduler (explained in Section 5)

and starts it up. The editing tools are small icons shown to the left of the picture (tool menu).

These icons represent, in order, the following functions:

draw-thin

erase

straightedge

13

gray-block

paintbrush

magnifier

The actions for these tools are displayed above the picture (action menu). The actions are

handled by the class BitRectTool, an object of which paints on the screen. A tool is a

combination of action, mode, pen-width, gray, and grid. Action is one of

block-of-gray, draw, straight-edge, magnify.

Mode defines how the tool is combined with the current picture. It is one of

store, or, xor, and

Pen-width is the width of the drawing pen. It is either 1, 2, 4, or 8.

Gray is one of

black, darkgray, gray, lightgray, white

and grid, the minimun spacing of the mouse points, is one of 1, 2, 4, 8, 16, or 32.

To make painting work, you select a tool. A default selection of actions is given to you. Any

selections you make in the action menu change the definition of the currently selected tool;

these tool settings are shared by all bitRect editors. One heuristic to use would be to ignore the

tools--just keep changing the actions to fill your needs.

The picture window redefines the blue-bug menu to be

move

grow

close

filout

printbits

filout creates a file of the bits shown on the screen. The default name for the file is

BitRect.pic. This file can be filed into a Smalltalk system.

printbits creates a press file for printing named BitRect.press and sends the file to the

printer. The file can be reprinted using Empress.run.

The yellow-bug does nothing.

Font Windows

Font windows are objects of class FontWindow. They are used for specifying the graphical

representations of text characters on the screen. The best way to find out how to create and use

the font editor is to use the browse window, as explained below, and selecting: the category

14

Window, the class FontWindow, the category Help, the message help. You will be able to

execute the expressions shown there to create new fonts and use currently available ones.

Paned Windows

A paned window is a special kind of window in that it is sub-divided into areas or panes, each

of which might contain a different kind of window. The class PanedWindow simply

provides a way of specifying a template for the layout of the subareas and the message protocol

for distributing scheduling and show requests among them. Primary among the kinds of

windows used in a subarea of a PanedWindow are objects of the class ListPane or

CodePane. A CodePane is a subclass of Window; as noted before, it handles the yellow-

bug text editing menu described in Section 1. A ListPane is a kind of TextFrame; it

displays a vertical list of one-line items. The list can be scrolled slow or fast, and any item can

be selected. When an item is selected (or deselected) a dependent pane (subarea of the paned

window) can be told to display appropriate material. Selection is done with the red mouse

button (top or left button). It provides no menu for the yellow button.

The most well-known paned window is the browse window described in the next section.

THE BROWSE WINDOW

The browse window allows you to inspect and modify any program in the system. The browse

window is a five-paned PanedWindow, with four ListPanes at the top and a larger

CodePane below. One item at a time can be selected in each ListPane; as usual, the item

selected is highlighted for identification. Each pane’s selection controls the list of items

displayed in the next pane. Together, the four list panes reflect a four-level hierarchy of all

classes and their message dictionaries currently defined in the Smalltalk system.

Wake up the browse window and enter its first list pane (the one at the top left) with the mouse.

The pane will show a scroll bar, which you can use to scroll its contents up or down, as

described in Section 1. (Scrolling of list panes differs from that of code panes in a couple of

details: the speed of scrolling is constant and independent of the cursor’s vertical position

within the scroll bar.) As you move from one pane to another within the window, only the pane

containing the mouse cursor will display its scroll bar, to show that that is the pane currently

active.

The first pane, called the system pane, lists broad categories of Smalltalk classes, such as

’Numbers’, ’Graphical Objects’, ’Windows’, and so forth. Select the line AllClasses by

pointing at it with the mouse and pressing the red button until the line is highlighted. The next

pane (the class pane) will display an alphabetical list of all classes currently known to the system.

Now try changing the selection in the system pane to, say, Numbers; the contents of the class

pane will change to show only the classes belonging to that category (Date, Float, Integer,

LargeInteger, etc.). For an overview of the entire system, select SystemOrganization in

the system pane: the code pane (the large pane at the bottom of the browse window) will

display a list of all categories of classes currently known, with the classes belonging to each. For

15

now, do not edit this description. An explanation of how to edit it is given in Section 3.

After selecting a category (or AllClasses) in the system pane, select one of its classes in the

class pane, causing the third pane (the organization pane) to show the categories of messages

defined for that class. The line ClassDefinition in this pane causes the code pane to display

information about the structure of the class, such as its superclass and the names of its instance

and class variables; selection of ClassOrganization results in a display of a list of the class’s

message categories with the messages belonging to each. When you select one of the message

categories shown in the organization pane, the fourth pane (the selector pane) will show a list of

the messages in that category. Finally, when a message is selected in the selector pane, the

program for the corresponding method will appear below in the code pane.

Decompiling

Note that Smalltalk sources for all code is stored on the Woodstock server. Accessing code is

done over the network. It can therefore be slow. Alternatively, the file Smalltalk.sources

(from Ivy<Smalltalk>) can be placed on your disk for direct access from Smalltalk. The

penalty is the large number of pages used up on your disk.

Alternatively, hold down the left shift key when selecting a method. The source code will be

obtained by decompiling from the object code. As a result, no comments are displayed.

Editing

All the editing, execution, and compilation facilities discussed for CodeWindows are available

in the code pane of the browse window. After you have edited the code for a method, the

yellow-bug menu command compile will incorporate the newly edited version into the system,

replacing the previously existing definition for that method. Once the contents of the code pane

have been edited, the browse window will not allow you to make a new selection without either

compiling the method as edited or restoring it to its previous state with the cancel command;

instead, the window will signal you by flashing its code pane on the screen. (The same signal is

also used if you try to compile or cancel without having made any changes in the code.)

Yellow-Bug Commands

Each pane of the browse window has its own yellow-bug menu of commands. Figure 2.1 shows

the organization of the browse window and the yellow-bug menus associated with each pane.

An explanation for these commands is given next.

The system pane offers the commands filout and print, both of which cause the code for the

selected category of classes to be written out onto a file. (If no category is currently selected

when you press the yellow button, the pane will flash and no menu will be displayed.) The

difference between the two commands is that print generates a file in press format, with the

classes in the selected category listed in alphabetical order for human consumption, whereas

filout writes them in Bravo format in an order that reflects their subclass dependencies, so that

they can later be read back into Smalltalk and reconstructed. In both cases, the name of the file

16

is derived from the name of the category being filed out, with embedded blanks, if any, replaced

with hyphens. For example, if the category selected is ’Sets and Dictionaries’, filout will write

the code for that category on a file called Sets-and-Dictionaries.st (the extension .st stands for

Smalltalk); print will write it on a file called Sets-and-Dictionaries.press. (See Section 4 for

more details on printing and filing.)

On the class pane’s yellow-bug menu are the commands filout, print, and forget. The first

two function exactly the same way as in the system pane, except that they write out the source

code for only one class, the one selected in the class pane. The name of the destination file is

simply the name of the class--always one word--with the standard extension .st for filout, .press

for print. The forget command causes the definition of the selected class to be deleted from

the system. When a class is forgotten, all of its instances still in existence become obsolete, and

will no longer respond to any messages. To give you a chance to reconsider, and to protect you

from the dire consequences of invoking the forget command accidentally, the system will open a

notify window with the message All <classes> will become obsolete if you proceed...

(where <classes> is the name of the class being forgotten). If you are still resolved to forget

the class, confirm the command by entering the notify window with the mouse and invoking the

yellow-bug command proceed (discussed in detail in Section 3). The notify window will

disappear and the class will be forgotten as requested.

The organization pane’s yellow-bug menu contains the (by now familiar) commands filout and

print, which work essentially the same way as in the system and class panes. As usual, the

names of the files on which these commands generate their output are constructed from the

name of the category selected in the organization pane, with hyphens substituted for embedded

blanks and with the extension .st for filout, .press for print.

Yellow-bug commands available in the selector pane are spawn and forget. The latter is

equivalent to the same command in the class pane, but causes only the selected message to be

forgotten instead of a whole class. (However, since the consequences of inadvertently forgetting

a message are not as grave as those of forgetting a class, there is no two-stage confirmation

process--the command is simply carried out when invoked.) The spawn command creates a

new code window -- with all the properties and capabilities of that window -- containing the

current contents of the browse window’s code pane (that is, the program for the message

currently selected). When you issue this command, the browse window will go to sleep and the

cursor will assume the form of an origin cursor -- you are now expected to provide the frame for

the new window in the manner already described. The spawn command is useful in browsing

or modifying sets of related messages, since it allows you to display the program for a number of

messages simultaneously, each in its own window. After a spawn, the selector pane’s selection

is cleared and the code pane is reset to display the standard template for defining a new message

(these templates are explained in Section 3).

PROJECT VIEW WINDOWS (subviews)

17

It is possible to organize your work into different projects reflected in the system by a grouping

of windows. When you first resume Smalltalk, you are at the root (top view) of an n-ary tree of

possible projects (see Figure 2.2). Initially, this project view tree has only the single (root) view

in which you have been working. You might have already noticed a rectangular area at the top

of the screen labelling this project view as Top View.

To create a new view, place the cursor in the area outside any window, press yellow bug and

select the command open a subview. You will then specify a small rectangle which will

serve as the entrance down a branch of the tree, to a new project view. Edit the title to give

your view a unique name.

Enter this subview project window. Yellow bug has the single command enter. Select it.

You will enter a new screen view, initially empty but for the label at the top of the screen. This

label is only edited by returning to the level containing its project view window.

To get a workspace or a browser, select the appropriate command in the yellow bug menu:

open a browser or open a workspace.

To return to the next view up the tree, place the cursor outside any window and select exit to

overview.

You can create any number of project windows at any project view level, moving down the tree

by entering a project window and selecting enter on the yellow bug menu, and moving up the

tree by selecting exit to overview.

You edit the name of the project by editing the title of the project window.

Remembering Changes

One significance of the project views is that each one owns its own storage (HashSet) named

Changes. In it is stored pairs of class name - message selector for any such message/method

you have edited or created within the context of this project. Examine it with Changes

contents sort. To use Changes in filing out all changes you make, execute

(dp0 file: ’name of file’) filout.

To reset storage use: Changes init.

To remove an item: Changes delete: ’class selector’.

system
pane

class
pane

organization
pane

selector
pane

code pane

filout
filout

print
print

filout

print

spawn

forget

again

copy

cut

paste

doit

compile

undo

cancel

align

Figure 2-1. Organization and Menus for the Browse Window

18.

forget

Top View

a project view

each "box" represents

an n-ary tree structure

Figure 2-2a.

Top View

Classes

Workspace

Figure 2-2b.

The initial view of

project: "Top View"

Figure 2-2. Organization of Project Views

19.

20

3. Defining and Debugging
Class Definitions

Defining a Class

To define a new class, select a class category in the first pane of the browse window. This

selection specifies the category to which the new class will be added, and causes a template to

appear in the largest pane of the browse window, the code pane. (If none of the existing

categories is suitable, a new category may be added by selecting SystemOrganization and

editing it, as described below.)

The template presented in the code pane looks as follows

Class new title: ’NameofClass’

subclassof: Object

fields: ’names of fields’

declare: ’names of class variables’

To define a new class, replace NameofClass by the appropriate name, leaving the quotes

intact (this is a string).

If the new class is to be a subclass of a class other than just the class Object, replace Object

by the desired superclass. (Note, this is not a string).

Replace names of fields by nothing if this class has no fields (instance variables) other than

those inherited from its superclasses, or by as many field names as desired, separated by spaces

(not commas!). The result is either an empty string or a string of field names.

Similarly, replace names of class variables by nothing if this class has no class variables, or

by as many class variables as desired.

For example,

Class new title: ’Record’

subclassof: Dictionary

fields: ’name address telephone’

declare: ’’

Once the editing is completed, depress the yellow mouse button and select compile from the

menu which is presented. The new class which you have defined will be added to the

designated category. When you re-select that category in the first pane of the browse window

(re-selection is forced on you by the manner in which the panes are refreshed after compilation),

your new class name will appear in alphabetical order in the second pane.

21

Defining a Category

To create a new category to which you want a new class to belong, select

SystemOrganization in the first pane. The code pane will be filled by parenthesized

expressions like the following:

(’Kernel Classes’ Class Context Object UserView VariableLengthClass)

The quoted part is the category name; the remaining names are of the classes which belong to

that category. The order in which these parenthesized expressions appear determines the order

in which the category names will appear in the first pane of the browse window. To insert a

new category, simply insert a parenthesized expression whereever you want the category to

appear. This expression may consist of just the quoted name of the category, or may also

include the names of one or more classes already defined. Class names may appear in more

than one category.

Compiling the new category list will cause your new category to be visible in the first pane.

You can then select it in order to define a new class to belong to that category.

Defining a Message

To specify a new message for a class, select the class in question in the second pane of the

browse window. This will cause the third pane to display

ClassDefinition

ClassOrganziation

’as yet unclassified’

if the class is newly defined.

Selecting ClassDefinition will present in the code pane the template which you just

completed, specifying the superclass, fields, and so on. You can change this definition with

varying results. For example, you can append new fields; if you insert or delete fields, then all

methods will be recompiled. Selecting ClassOrganization will present

’this class has not yet been commented’

(’as yet unclassified’)

in the code pane. The two lines of this template are invitations for further information. The

first line is a request for quoted comments describing the class. These comments may be as long

as you like. Especially useful is a description of how to create a member of the class. The

second line is a parenthesized expression exactly like that described above for

SystemOrganization; it invites you to classify the messages your new class will understand.

The quoted part is the name of the classification; this may be followed by a list of message

names that have already been defined. Typically you type none unless you are reorganizing

your message categories. Also, you can have as many message categories as you find necessary.

22

To specify a new message, select a category, such as ’as yet unclassified’, in the third pane.

This will cause the following template to appear in the code pane

Message name and Arguments | temporary variables "short comment"

["long comment if necessary"

Smalltalk

Statements]

After editing this template to replace the message pattern, list of temporary variables (separated

by spaces), comments, and method (Smalltalk statements), select compile in the yellow-bug

menu. The message selector will appear in the fourth pane of the browse window. By browsing

through the class definitions already in the system you will see many examples of this message

format.

Selecting any message selector from the fourth pane will cause its program to be displayed in

the code pane. The program can be modified and then compiled.

Debugging Aides: Notify and Inspect Windows

Two special kinds of windows, notify and inspect windows, provide a variety of facilities for

debugging and error anaylsis in Smalltalk-76.

Notify Windows

When an error occurs in the execution of a Smalltalk program, a notify window will appear in

the approximate center of the screen. The title area at the top of the window gives a brief

description of the nature of the error; the contents of the window itself identify the context in

which the error occurred, in the format

MessageClass(ReceiverClass)�Selector

where Selector is the name of the Smalltalk message causing the problem, ReceiverClass is

the class of the object to which the offending message was sent, and MessageClass is the

class in which the method corresponding to this message is defined. Notice that

MessageClass will always be either ReceiverClass itself or one of its superclasses. If the

two classes are identical, the abbreviated format

MessageClass�Selector

is used.

When you frame a notify window (select the frame command in the blue-bug menu), it opens

into a PanedWindow with six panes. Down the left side are three ListPanes, which we call

stack pane

23

context variable pane

instance variable pane.

On the right are three corresponding CodePanes, the

method pane

context value pane,

instance value pane.

Yellow-bug: stack command

The yellow-bug menu for the stack pane contains the commands needed to expand the

information in these six panes. Initially, the stack pane contains a single line identifying the

context of the error in the format described in the preceding paragraph. The yellow-bug

command stack in this pane expands the pane’s contents into a scrollable list of contexts in the

same format, representing the dynamic state of the control stack at the time of the error.

Selection in the stack pane

If you now select one of these contexts with the red button, information about that context will

appear in the remaining panes of the window:

The method pane will display the Smalltalk code for the interrupted method, the context

variable pane a list of arguments and method variables local to that method, and the instance

variable pane a list of the instance variables (fields) of the object executing the method. Each

pane can be scrolled in the usual way. You can display the value of any of the listed variables

by selecting the variable name with the red button: its value will appear in the adjacent value

pane. Any Smalltalk expression you evaluate (using the doit command) in one of the code

panes will be evaluated in the stack pane’s currently selected context. This often makes it

possible to recover from an error by assigning new values to one or more context or instance

variables and proceeding or restarting, as described below. For a closer look at the contents of

an instance or context variable, select the variable name and invoke the yellow-bug command

inspect in the variable pane--this will allow you to create an inspect window for examining the

internal state of the object to which the variable name refers.

Yellow-bug menus

Each of the panes has its own yellow-bug menu. The stack pane menu has been described

above. It contains

stack

spawn

proceed

restart

24

The context and instance variable panes have a menu containing only the single command

inspect.

The remaining panes are CodePanes; they offer all the usual facilities for editing, executing,

and compiling Smalltalk code (see Section 1).

You can inspect the code for any interrupted method simply by selecting the desired context in

the stack pane. If you need to view two or more such methods at once, use the stack pane’s

yellow-bug menu to spawn a separate code window for each method. After you have

diagnosed the cause of the error, you can edit and recompile the offending method or methods

and continue in any of three ways:

- Select a context in the stack pane and invoke the proceed command on that pane’s

yellow-bug menu. Execution will proceed in the selected context from the point of the

error.

- Select a context as above and invoke the restart command. The method running in that

context will be reexecuted from the beginning.

- Close the notify window. The context of the error will be lost and you will be returned

to the top level of the user interface. You can then re-issue the message that originally

caused the error, or do whatever else seems appropriate in the circumstances.

In its original form, before it has been framed, a notify window consists of a single pane,

corresponding to the stack pane in the window’s expanded form. All the stack pane’s yellow-

bug commands--stack, spawn, proceed, and restart--are available when the window is in

this form. Thus it is sometimes possible to save time and recover from the error without

invoking the frame command.

Inspect Windows

An inspect window allows you to "reach inside" an object and examine or change its internal

state. It consists of two panes, a list pane called the variable pane and a code pane called the

value pane. The variable pane lists the names of the object’s fields (instance variables):

selecting one of these names with the red button causes the current contents of that field to be

displayed in the value pane. (If the object being inspected belongs to a variable-length class, the

variable pane will contain element numbers instead of field names. For an object with more

than fifty elements, only the first twenty and the last twenty will be listed.) Any expression

executed in the value pane is evaluated in the context of the object itself, so that the value of

any of its fields can be set by simple assignment. The variable pane’s yellow-bug menu contains

the single command inspect, which creates a new inspect window for the object contained in

the currently selected field of the original object. By repeatedly invoking this command, you can

"dig," a level at a time, into an object’s structure.

25

4. Printing and Filing out
from Smalltalk

To print all the information associated with a class -- its description, the messages to which it

will respond, and the methods which these messages invoke -- select the desired class in the

second pane (class pane) of the browser and depress the yellow button to bring up a menu

which will look as follows:

filout

print

forget

Selecting print in this menu will result in the preparation of a press file named classname.press

where classname is the name of the selected class. When the printer is unknown or not

available, a message appears in the system Dispframe and a menu of possible printers appears at

the center of the screen. The printer which you select the very first time will be your default

printer, e.g. MENLO. Subsequent selections do not change this default. If the menu appears

again, select the same printer, or a different printer, or none, which appears as the last option.

The screen will go black during this process. The press file will be left on your disk at the end

of this transaction.

Selecting filout in the menu will result in the preparation of a Bravo format file named

classname.st which is written on your disk. This file may be printed by transferring it to a Bravo

disk, if you desire, but its main usefulness is that it may be filed into a new Smalltalk system

(the press file cannot). To this end, it is better to print the class on the same file as its

superclasses using the print command in the first (system) pane.

Categories of classes (in the first, system, pane of the browser window) also respond to print

and filout. In this case, all classes categorized in the selected category will be printed or filed

out. The difference between the two commands is that print generates a file in press format,

with the classes in the selected category listed in alphabetical order for human consumption,

whereas filout writes them in Bravo format in an order that reflects their subclass dependencies,

so that they can later be read back into Smalltalk and reconstructed. In both cases, the name of

the file is derived from the name of the category being filed out, with embedded blanks, if any,

replaced with hyphens. For example, if the category selected is ’Sets and Dictionaries’,

filout will write the code for that category on a file called Sets-and-Dictionaries.st (the extension

.st stands for Smalltalk); print will write it on a file called Sets-and-Dictionaries.press

The organization pane’s yellow-bug menu contains the (by now familiar) commands filout and

print, which work essentially the same way as in the system and class panes. As usual, the

names of the files on which these commands generate their output are constructed from the

name of the category selected in the organization pane, with hyphens substituted for embedded

blanks and with the extension .st for filout, .press for print.

26

Press files which are no longer needed may be deleted from within Smalltalk by executing the

expression

(dp0 file: ’classname.press’) delete

If you wish press files to be deleted automatically after printing, you may modify the standard

Smalltalk release as follows. For classes, modify class Class by changing the method for the

message printout to read:

dp0 delete: title + ’.press’

For categories of classes, modify class SystemOrganizer by changing the method for the

message printCategory to read:

dp0 delete: (cat + ’.press’) as FileName

To send printout to a printer different from the default, modify class Pressfile by changing

the method for the message toPrinter from

self toPrinter: PrinterName

to

self toPrinter: ’Clover’ (or other name of printer)

Alternatively, change the value of the object PrinterName

PrinterName _ ’Menlo’.

If your chosen printer is not available (e.g., there is a time out in the attempt to transmit the

information), then the system will inform you of the situation and present a menu of all the

printers from which you can select a new choice for this transmission only. You might choose

to retry the same printer.

27

5. Smalltalk
Objects

SUBCLASS STRUCTURE

Object
Array

CoreLocs
Interval
Paragraph

TextEntity
String

UniqueString
Natural

Substring
Vector

BitBlt
BitRectTool
Class

VariableLengthClass
ClassOrganizer

SystemOrganizer
Context

RemoteContext
Cursor

Decompiler
Dict

File
AltoFile
WoodstockFile
JuniperFileController

FileDirectory
AltoFileDirectory
FtpDirectory
JuniperInterface
WoodstockFileDirectory

FilePage
AltoFilePage
EtherFilePage

WoodstockFilePage
JuniperPageBuffer

DictionaryEntry
Etherworld
ExceptionHandler
FieldReference
FontWindow
Form
FormSet
Generator
HalfToner
HashSet

Dictionary
SymbolTable

MessageDict
JuniperParameterBlock

JuniperRequestParameterBlock

28

JuniperResultParameterBlock
Menu
MessageTally
Number

Date
Float
Int32
Integer
LargeInteger
MachineDouble

ObjectReference
Pacbuf
ParagraphPrinter

BravoPrinter
PressPrinter

ParagraphScanner
ParsedAssignment
ParsedConditional
ParsedConjunct
ParsedDisjunct
ParsedFieldReference
ParsedLoop
ParsedMessage

ParsedNegation
ParsedObjectReference
ParsedRemote
Parser
ParseStack
Point

UserEvent
PressFile
PriorityInterrupt
PriorityScheduler
RadioButtons
Reader
Rectangle

BitRect
RemoteParagraph
ScrollBar
Socket

RetransmitSocket
NameUser
RPPSocket

EFTPSender
WSocket
JuniperSocket

RoutingUpdater
Stream

Dispframe
FileStream
ParsedBlock
PQueue

SafeQ
Queue

EventQueue
Set

Image
BitImage

29

Document
Heading

Path
SetReader

Textframe
ListPane

ClassPane
OrganizationPane
SelectorPane
StackPane
SystemPane
VariablePane

TextImage
BorderedText
ParagraphEditor

TextStyle
Time
Timer
TokenCollector

FieldNameCollector
Turtle

PressTurtle
UserView
VirtualMemory
Vmapper
WidthTable
Window

BitRectEditor
CodePane
DocumentEditor
FilePane
PanedWindow

BrowseWindow
CodeWindow
InspectWindow
NotifyWindow
ProjectWindow
SyntaxWindow

30

SMALLTALK GLOBAL OBJECTS

Globals you should know about

BitBlt Colors

background Integer
black Integer
dkgray Integer
gray Integer
ltgray Integer
white Integer

BitBlt Modes

erasing Integer
oring Integer
storing Integer
xoring Integer

Cursor Shapes

CornerCursor Cursor
DownCursor Cursor
NormalCursor Cursor
OriginCursor Cursor
ReadCursor Cursor
UpCursor Cursor
WaitCursor Cursor
XeqCursor Cursor

File Directories

dp0 AltoFileDirectory
dp1 AltoFileDirectory
dpw WoodstockFileDirectory
dpj JuniperInterface

User interface

Changes HashSet
user UserView
NotifyFlag Object
Undeclared SymbolTable

Miscellaneous

DefaultTextStyle TextStyle
mem CoreLocs
Smalltalk SymbolTable
spy MessageTally
Top PriorityScheduler
PrinterName String

31

Globals you may run into

User interface

AllClassNames Vector
defaultBitRectEditor BitRectEditor
Events EventQueue
kbMap String
sysFontWindow FontWindow
SystemOrganization SystemOrganizer

Miscellaneous

IntervalFrom1By1 Interval 1 to: 32767 by: 1
nullString String
PressScale Integer 32
UpperCase String

Globals you should never run into

Pools

AltoFilePool SymbolTable
ByteCodes SymbolTable
FilePool SymbolTable
TokenCodes SymbolTable
WoodstockFilePool SymbolTable
EtherPool SymbolTable
JuniperConstants SymbolTable

Virtual Memory

BitMasks SymbolTable
FirstContext Context
Flushed Object
Pmap VirtualMemory
SpecialOops Vector
Vmem VirtualMemory

Compiler

FilinSource Object
Huh String
HuhFlag Object
MethodKeeper Stream
MethodKeeperKeeper Object
UST1 Vector
USTable Vector
WhatFlag Object

Miscellaenous

Counter String
FontDict Dictionary
ThePicture Object
Xlate String
Xlated Vector

32

6. Scheduling Round-Robin Fashion
The job of managing the Smalltalk window interface -- deciding which window is awake and

relaying information to that window about user actions with the mouse, keyboard, and keyset -- is

one of the services provided by the ubiquitous special object user. In one of its fields, called

sched, user maintains a list of all windows and other kinds of objects currently active on the

display screen.

A window w can be brought into existence by executing the expression

w _ Window new newframe.

This will supply an origin cursor with which you can frame the window (as described in Section 2).

The window w can then be placed on the list sched by executing one of the following:

user schedule: w

user scheduleOnBottom: w

user restartup: w

The first expression places w at the front of the sched, the second places it at the back. The third

is the same as the first except that Smalltalk returns to the top level (as in CTRL-SHIFT-ESC or

user restart), the cursor is forced into the window w, and the window is immediately awakened.

To remove (the first occurrence of) w from sched, execute the expression:

user unschedule: w

The order in which windows are listed in the list sched determines their relative "depth" as they

appear to you on the screen: objects listed earlier in sched appear nearer to the "front" of the

display, and may overlap partially or completely hide those further back in sched. Whenever a

window wakes up, it is "promoted" to the beginning of sched (and therefore to the front of the

screen), and all windows previously ahead of it are moved back one position to make room.

To "live" in sched, an object must be of a "schedulable type". To qualify as schedulable, it must

understand three messages: firsttime, eachtime, and lasttime, which mean, approximately,

"Do you want to wake up?" "Do you want to remain awake?" and "Go to sleep". Methods for

responding to these messages are defined in class Window, so any object belonging to a subclass

of Window -- such as BrowseWindow, CodeWindow, or NotifyWindow -- will

automatically understand them. (The subclass may, of course, override Window’s methods with

definitions of its own.) An object in sched needn’t actually be a window, as long as it knows how

to behave like one by responding to these three messages. The "dialog window," for example,

belongs to class Dispframe, which is not a subclass of Window; but since it understands the

messages firsttime, eachtime, and lasttime, it is perfectly at home in sched.

The message lasttime should return self if it wants the scheduler to select the next window to

awaken by scanning sched in the normal top-down order. It should return false if it wants the

33

scheduler to scan sched in bottom-up (reverse) order. The latter is appropriate if the window got

put to sleep by the user’s invocation of the UNDER command in the blue button menu.

HOW THE SCHEDULER WORKS

The information above should be enough for you to get going with scheduling windows. If you

have difficulties using the scheduler, you may want to read the rest of this documentation, which

describes its operation in more detail.

A context installed in Smalltalk’s top-level priority scheduler drives the window interface by

repeatedly sending the message

user run

user’s method for responding to this message is as follows (paraphrasing slightly for simplicity):

run | i w

[while� true do�

[i _ 0.

until� ((i _ i + 1) > sched length or�

(w _ sched � i) firsttime) do� [].

i > sched length � []

sched promote� w.

while� w eachtime do� [].

w lasttime]]

This method consists of a single outer loop, to be repeated as long as true is true -- in other words,

forever. On each pass through this outer loop, the inner until� loop scans through the list sched,

sending each window (or other object) the message firsttime, meaning "Do you want to wake

up?" The answer is up to the window itself to decide, usually by asking its screen frame (an

object of class Rectangle) whether it contains the current location of the mouse cursor. (Notice

that, since sched is scanned from front to back, the window that wakes up will be the foremost

window containing the cursor.) However the window arrives at its decision, it will respond to the

message firsttime with the value false if it wants to remain asleep, true (that is, any value other

than false) if it wants to wake up. In addition, if the answer is true, the window will perform any

actions it considers appropriate upon awakening, such as repainting itself on the screen (overlaying

any other windows appearing in front of it), highlighting a selection, growing a scroll bar, or

whatever else a particular flavor of window may require.

The scan through sched continues until either the end of sched is reached or one of the windows

answers true to the message firsttime, meaning "Yes, I want to wake up." In the former case,

the next line of the method says to do nothing and repeat the outer loop, restarting the scan at the

beginning of sched. If, on the other hand, the scan ended because window w asked to wake up,

user asks its sched to promote w to the front, then enters another loop that says "Keep sending

w the message eachtime, and do nothing as long as the answer is true." The window will

answer eachtime with true or false, indicating whether it wants to remain awake or go to sleep;

34

if it chooses to remain awake, it will also perform any chores associated with doing its thing," such

as interrogating the mouse and keyboard and responding as appropriate. Thus, although the inner

while� loop of the method above has a null body, the repeated execution of the message

w eachtime

as its termination test causes the window to transact its normal business. When the window decides

to go to sleep (for example, if a mouse button is pressed outside its frame), the loop terminates and

the next line is executed, sending the window the mesage lasttime. This instructs it to close up

shop and go to sleep, and it will comply after its fashion. The outer loop of the user run method

will then be repeated, initiating another scan through sched.

The description just given of user’s window-scheduling algorithm is accurate in its gross outlines,

but in real life matters are complicated by some wrinkles. For example, the run message is

actually run:, and takes an argument, called topFlag. A non-false argument value means that the

window on the front of sched is already awake, and that sched should not be scanned until this

window decides to go to sleep.

