How To Use the Smalltalk-76 System

Learning Research Group
October 1979

(if you find errors, etc, inform Adele Goldberg)

For Internal Xerox Use Only

XEROX

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Section

1. Getting Started, Text Editing, and Printing

2. The Smalltalk-76 User Interface: Text, Picture,

Browsing and Project Windows; keyboard map

3. Defining and Debugging Class Definitions

4. Printing and Filing out from Smalltalk

5. Smaltalk Objects

6. Scheduling Round-Robin Fashion

Table of Contents

Page

20
25
27

32

|. Getting Started, Text
Editing, and Printing

This and subsequent documentation assumes you are familiar with the Alto, Ethernet, and
mouse pointing device. If not, you should obtain separate documentation and read it before
continuing with this material. This document does not purport to teach Smalltalk, the
programming language; it only presents the user interface.

Getting Small

Your first step isto set up your own Smalltalk disk. The easiest way to do thisis by copying
the Basic Smalltalk Disk provided for Smalltalk courses. The course disk in Adele’s office, or
the Basic Smalltalk disk usually available in Dan Ingalls' office, contains all the files you will
need to run Smalltalk, along with FTP (for transferring files from one place to another over the
Ethernet), and Empress (for printing files in hardcopy form).

All important Smalltalk-related files are kept on the lvy file server in a directory named
<Smalltalk>. Thelatest version of the system is always available in this directory under the
name Small.boot; thereis also a corresponding symbol file called Smalltalk.syms, containing
symbol-table information needed by the Swat debugging utility. These two files should always
be retrieved together. An Alto command file for this purpose is kept in the [Ivy]<Smalltalk>
directory as GetSmall.cm: if you keep a copy of thisfile on your disk, you can always obtain
the latest Smalltalk release by typing

@GetSmall cr

to the Alto Executive. Y ou should be running under OS-16. Smalltalk’s prior to version 5.5
run only under OS 15.

Whenever anew version of Smalltalk is released, the previous version is saved on the files
OldSmall.boot and OldSmalltalk.syms -- if you encounter difficulties with anew release, you can
back up to the previous version by retrieving these files with the command file GetOldSmall.cm.
If you have an Alto Il with the XM, or Extended Memory feature, you can use the special XM
version of Smalltalk, designed to make use of the extra memory available. Thisversion, stored
on XMSmall.boot and XMSmalltalk.syms and accessed via GetXMSmall.cm, gives noticeably
better performance than the standard release, but is updated less frequently and often lagsin
incorporating new features and corrective changes.

Sources are accessed from the Woodstock server located in Palo Alto, California. A local copy
can be obtained by using FTP to get [IVY]<SMALLTALK> Smalltalk.Sources, and then
executing in Smalltalk

user sourcesTo: (dpO file: 'Smalltalk.Sources’) changesOnly: true.

The code to do both the FTP and the message to user can be found in the user workspace
window as described later.

Entering and Leaving SMALLTALK
To enter Smalltalk from the Alto Executive, type
Resume Small.boot cr
To leave Smalltalk and return to the Executive, evaluate the expression user quit

either by typing it into the dialog window, as described below under THE DIALOG WINDOW; by
selecting and executing it in a code window or code pane (see the section: CODE WINDOWS,
Execution and Compilation); or by selecting the command qui t in the project view menu (see
section: PROJECT VIEW WINDOWS in Section 2). A line containing this message isincluded for
your convenience in the "UserView workspace" window provided in the Smalltalk release
(initially, the upper right window on the screen). Whenever you quit Smalltalk in this way, the
current state of your working environment is saved on the file Small.boot; the next time you
resume Small.boot, you will find the Smalltalk system in amost the state in which you left it
(filesand ether are reset). Thusthereis no need to save your work at the end of one session or
to restore your working context at the beginning of the next: you simply quit and resume, with
no break in continuity. (Of course, if you retrieve afresh copy of the Smalltalk release from
Ivy, your old working environment will be lost. 1f you have made changes to the system that
you wish to save, you must explicitly file them out before obtaining the fresh release and file
them back into the new copy--see Section 4.)

Windows and Menus

All communication with Smalltalk is done through awindow. Windows come in various flavors,
each with its own properties and capabilities, and can be freely created, destroyed, and moved
around on the screen. Only one window is"awake" at any giventime. To "wake up" a

window, place the cursor into it and press any of the mouse buttons: the window will redisplay
itsimage on the screen to signify that it is awake, possibly overlaying and completely or partially
hiding some of the other windows; the window that was previously active will "go to sleep.”

(If any of the "flashers" at the top of the screen are active, Smalltalk is busy doing something
else, such as disk management, and may not hear your wakeup signal immediately--persevere.)

When you obtain a fresh copy of Smalltalk from Ivy, you will find three windows initially
displayed on the screen. Prominent in the center is a browse window (which is a Smalltalk object
of class Br owseW ndow); in the upper left corner isadialog window (class Di spf r ane);

at the upper right, overlapping and partially hiding the browse window, is a code window (class
CodeW ndow)) titled "UserView workspace". When you have learned how to use the browse
window, you can use it to inspect the code that drives any of these windows (including the
browse window itself) by browsing the appropriate class. (See Section 2).

THE DIALOG WINDOW

Those who have previous experience with conventional interactive language systems will find the
behavior of the dialog window the most familiar. (Note that itstext is not editable and

therefore its use is discouraged in favor of editing and executing in a code window.) Enter the
window with the mouse and press any of the mouse buttons. The window will refresh itsimage
and prompt you with the character to let you know it islistening. Y ou can now proceed to

hold an interactive dialog with Smalltalk. Keeping the cursor in the dialog window, type any
Smalltalk expression, terminated by aline-feed character, which will appear as the Smalltalk
graphic ("do-it"). Smalltalk will respond with the value of the expression you typed, and

will prompt you with another . Try typing3 + 4 into the dialog window--you will not be
disappointed. If you type an expression ending with a period, it will be evaluated strictly for

effect: thevalueit returnswill be discarded and the default valueni | displayed instead. Thisis
useful for the casesin which either no result is desired (such as clearing the screen) or the result
has avery extensive response to the message pr i nt whichis not desired.

The dialog window offers limited editing facilities for correcting typing errors: backspace
cancelsthe last character, control-w cancelsthe last word. |f the window becomes full, it will
scroll up automatically to make room for another line of dialog; thereis no way to scroll down
in order to inspect something you typed earlier. To clear the dialog window, type control-x:
the window will become empty and prompt with anew . If the cursor leaves the dialog
window, the window will continue listening to the keyboard (provided you don't put it to Sleep
by waking up another window), but will stop echoing the text you type in and will not respond
to the "do-it" character . Reentering the dialog window will causeit to display all the text
you have typed since leaving the window, and to respond to any do-it’ s thistext may contain.

KEYBOARD/CHARACTER CORRESPONDENCES

Character Smalltalk KeyStroke Meaning
ctrl aor ctrl relational
ctrl nor ctrl \ relational
ctrl r or ctrl . relational
ctrl f or ctrl = relational
ctrl remote evaluation
ctrl / then only
ctrl g or ctrl [subscript
ctrl’ literal
ctrl _orctrl g return
ctrl | point

ctrl u or shift - high minus

CODE WINDOWS

Because they provide more flexible editing facilities, code windows are generally more
convenient than the dialog window for communicating with Smalltalk. Asyou become more
familiar with the system, you will probably find yourself using them more and more and the
dialog window less and less.

Scrolling

Move the mouse into the code window at the upper right titled "UserView workspace", and
press one of the mouse buttons. Y ou will see the workspace window wake up, and the prompt
character will disappear from the dialog window, signifying that that window has gone to
sleep. A scroll bar will appear at the left of the workspace window to show that the window is
awake and ready to respond. If you move the mouse out of the window, the scroll bar will go
away. This meansthat the window is not prepared to respond to your requests, although it will
remain awake until you wake up some other window -- when you reenter the window the scroll
bar will reappear. Move the mouse into the scroll bar: the cursor will change into an upward-
pointing arrow when you are in the right half of the scroll bar, adown arrow in the left half.
When you leave the scroll bar, the cursor will resume its normal form, a "northwest arrow."

Enter the scroll bar with the mouse and press the "red" (left or top) button. The line of text
directly opposite the cursor will jump to the top of the window, if you are in the right half of
the scroll bar (indicated by an up arrow cursor); thefirst line will move down to the cursor
position, if you arein the left half of the scroll bar (indicated by a down arrow cursor). The
window will continue to scroll repeatedly in thisway as long as you hold down the button--you
can use the vertical position of the cursor within the scroll bar to control the speed at which the
window scrolls.

The small box within the scroll bar is a position indicator, whose vertical location shows the
location of the window’ s visible contents relative to its text asawhole: the top of the scroll bar
represents the beginning of the text, the bottom represents the end. If you move the cursor into
the position indicator itself, the cursor will change to asmall dot. By holding down the red
button and moving the mouse, you can then drag the position indicator to any desired location
within the scroll bar. When you release the button, the window will scroll to the corresponding
position in the text.

Selection (red mouse button)

Most operations in a code window are based on the idea of selecting a position or a passage in
the window’ s displayed text and manipulating it in someway. The system identifies the passage
currently selected by highlighting it on the screen; if the selection is a position between
characters, it appears as a vertical bar at the appropriate location. Selections are made with the
red mouse button (Ieft or top), according to the following conventions:

- To select a position between characters, simply point at the desired position and click the
button.

- To select awhole passage, point at the beginning of the passage, press and hold the
button, and move the cursor to the end of the passage before rel easing the button.

- To select asingle word, point anywhere within the word and click the button twice.
(Timing hereis not relevant as no clock or timer isinvolved; what mattersisthe
sequencing of two clicks with the cursor pointing to the same location. Just give the
system enough time to notice the first click before executing the second one.) For
purposes of thisrule, aword is any sequence of "tokenish" characters bounded by
nontokenish characters. (Tokenish characters are letters, digits, period, colon, and the
special Smalltalk characters "open colon” and "high minus" .) If you doubleclick in
this manner at the space between words, the word selected is the one closest to the vertical
bar.

- To select awhole line, point at the beginning or end of the line and click twice. A lineis
delimited by a carriage return which has no visible printing character. 1t may seem that
severa "lines" are selected due to the automatic text wrap-around in awindow.

- To select everything between a pair of matching left and right delimiters, point just inside
either delimiter and click twice. Delimiter pairs on which thiswill work are parentheses (
), square brackets[], angle brackets < >, curly braces{ }, single (string) quotes’ ’, and

double (comment) quotes" .

L eft delimiter takes precedence over the right one. That is, should you select between two
delimiters, the choice isthe one on the left. For example,

(ABCD’) EFGH'1J

If you select between the’ and), the matching assumes you mean to pair single quote
marks; the selection is)EFGH .

- To select the last passage just typed from the keyboard, press the escape key.
Editing (yellow mouse bug menu and typing)

When the window is awake and contains the cursor, any text typed on the Alto keyboard will
automatically replace the current selection; if the selection is a position between characters, the
effectistoinsert thetyped text at that point. Pressing the delete key will delete the passage
currently selected; backspace deletes the character immediately preceding the current selection;
control-w deletes the word preceding the selection. (These last three conventions can also be

used to correct errors during type-in.) Further editing facilities are available through the code

window’ s yellow-bug (middle mouse button) menu (i.e., press yellow bug, hold the button until

theitem is selected and then release the button):

- The menu command cut deletes the current selection, and is equivalent to the delete key
on the keyboard.

- After a passage has been deleted or cut, it can be moved to another location by selecting

the new location and issuing the command past e.

- A piece of text can be copied to a new place without deleting it from its original location
by selecting the text to be copied, invoking the menu command copy, then selecting the
destination location and invoking past e.

- In general, the past e command replaces the current selection with a copy of the last piece
of text removed using the delete, cut or copy command, or text typed in from the
keyboard. Thus, to insert the same text in several places, select the first location and type
the desired text, then select each of the other locations in turn and invoke paste in each
place.

- After apassage is selected and replaced, the command agai n will find the next
occurrence of the same passage and repeat the replacement.

- The command undo rescinds the last delete or paste operation and returns the text to its
previous state.

These operations are not limited to a single window: for example, you can cut or copy a
passage from one window and paste it down in another.

Formatting (yellow mouse bug menu and control keys)

Some limited formatting capabilities are provided in the code window. The yellow-bug menu
includes the command al i gn. Success selection of this command justifies the left margin, right
margin, both margins, or not both margins (centered text).

Font changes are made using control characters. Make a selection in the window, then type

ctrl0-ctrl 9 to select the font specified in DefaultTextStyle
ctrl i to select italics

ctrlb to select bold

ctrl - to select underlining

ctrl x resetsto font 0, no bold, no italic

Italics, bold, and underlining are removed by typing: shift ctrl i, shift ctrl b, or shift ctrl -,
respectively. These changes are not made during type-in.

Execution and Compilation (yellow mouse bug menu)

A code window can be used to do anything you can do in the dialog window, with the added
advantage that you can edit your input with the facilities just described. To evaluate a piece of
text displayed in a code window as a Smalltalk expression, select the desired text using the
selection conventions given above, then issue the menu command doi t . Smalltalk will black out
most of its screen while evaluating the expression. When the screen returns, the value of the
expression will be inserted after the expression.

Try thisat your own Alto: with the UserView workspace window awake, select a convenient
location in thewindow and type 3 + 4. Then hit the escape key to select the text you have just
typed: it will be highlighted on the screen for identification. Now press the yellow mouse
button to display the menu, do not release the button until you have selected the command

doi t , and then release the button. The expected result will appear adjacent to the text
previously selected; it will be selected so you can delete it immediately if you choose. The
result can also be placed in other positionsin the text using the past e command.

The command conpi | e in the code window’ s yellow-bug menu is used to finalize the window’ s
edited text and make it permanent. Every code window is associated with a Smalltalk message;
the window contains the method (program) for that message. Theconpi | e command
recompiles the method, incorporating the changes you have made as a permanent part of your
Smalltalk system. The menu command cancel wipesout all changes made since the last
compile, restoring the window’ s text to its previous state.

The UserView workspace is aview of amessagewor kspace in classUser Vi ew. Executing
conpi | e will change that method in your Smalltalk system (but not in the sources stored on the
network).

Editing a Disk File

In order to create a code window displaying the contents of anew or old disk file, evaluate an
expression of the form

(dpO file: "filenane') edit.
or
f edit

wheref isanobject of classFi | eSt r eam either by typing in a dialog window, or typing and
selecting in a code window as described above. (Some caveats: since the fileis stored internally
asasingle Sring, editing can be rather ow and the size is limited to 16384 characters; when
you store (see below), the text is saved, but not the formatting.

When you issue this command, the last active window will go to sleep and the cursor will
assume the form of an origin cursor -- aright angle representing the new window’ s top left
corner. Move the cursor to the desired position for this corner of the window, then press and
hold any of the three mouse buttons; the cursor will change to a corner cursor representing the
bottom right corner of the window. Aslong asyou continue to hold the button, the new
window will display aflashing frame, with itstop left corner at the location you have designated
and its lower right corner following the movements of the cursor. When you release the button
the window’ s location will be frozen, its contents will be displayed, and the cursor, resuming its
normal form, will automatically be repositioned to the center of the window.

The window is a code window and therefore all editing is carried out as before. However, there

are two changes to the yellow bug menu. The conpi | e and cancel commands are replaced by
get and put . To saveyour edits (but not your formats), select put ; to retrieve the file
contents prior to your edits since the last put , select get .

Printing the Disk File

Printing is described in detail in Section 4. For now, in order to complete your assignment, you
can print the file by selecting the command pr i nt in the menu that appears when you hold
down the mouse’ s blue button (right or bottom button). When the execution of the command is
completed, the file should have been sent to the printer. If it hasn’t, you can get out of
Smalltalk (by executing user qui t) and print the file called window.press using Empress.

EDITING WINDOW TITLES

Thetitlesto most windows are editable using selection and typing only. Invoking yellowbug
menu resultsin asimple flash of the title frame. Windows on to files do not have editable titles.

Document Editor

It is possible to prepare and print a document that integrates textual and pictorial images using
the Smalltalk document editor. Good printing and formatting capabilities are provided. The
explanation for using this editor is omitted from this documentation, however, because of the
changing nature of this experimental system. Look at classes organized under the category FPI
Packages.

2. The Smalltalk-76 User Interface:
Text, Picture, Browsing and Project
Windows

Windows and Menus

Most windows offer two different menus. The yellow (middlie) mouse button activates a menu
of commands specific to the particular kind of window, representing operations the window
knows how to perform on its own contents as displayed on the screen; the "blue" button (the
one on the right or the bottom, depending on the kind of mouse you have) invokes a menu of
commands shared by all windows, which are used for manipulating the windows themselves on
the Alto screen. These "blue-bug" commands are discussed below. The yellow-bug commands
must be described separately with respect to each kind of window. We have aready done so for
code windows and windows onto file streams (see section 1).

BLUE-BUG COMMANDS

For the most part, manipulation and positioning of windows on the Smalltalk display is done
through the blue-bug menu, which is the same for al kinds of windows. (Some of the more
exotic kinds of windows have their own blue-bug menus, which we will not discuss here; the
dialog window is rather special, and hasno menusat al.) On the standard blue-bug menu are
the following commands:

under
frame
cl ose
print
printbhits

- under wakes up and bringsto the top the "bottommost" window under the current
position of the cursor. This command is useful for getting your hands on awindow that
has become "lost" under another window, which hides it completely. (You don’t need the
under command to wake up awindow that isonly partialy obscured: simply enter the
visible portion of the window with the mouse and press one of the buttons.)

- frame isused for changing the size and location of awindow. Y ou must specify the
window’ s new location in the following way. When you issue this command, the cursor
will assume the form of an origin cursor -- aright angle representing the new window’s
top left corner. Move the cursor to the desired position for this corner of the window,
then press and hold any of the three mouse buttons; the cursor will change to a corner
cursor representing the bottom right corner of the window. Aslong asyou continue to
hold the button, the new window will display aflashing frame, with its top left corner at
the location you have designated and its lower right corner following the movements of
the cursor. When you release the button the window’ s location will be frozen, its contents

will be displayed, and the cursor, resuming its normal form, will automatically be
repositioned to the center of the window.

- cl ose destroys awindow permanently and removes itsimage from the screen.

- print and printbits arebothintended to generate press files containing a representation

of the window’ simage as it appears on the screen. The difference between the two
commandsisthat pri nt bi t s represents the window’simage in pure bit-map form,
whereas pri nt uses acombination of graphical and text formats. For more details on
printing, see Section 4.

CREATING NEW WINDOWS

New windows can be created on the screen in avariety of ways, depending on the type of
window desired. All of them require that you specify the location of the new window on the
screen by the method described for the f r anme command in the window blue-bug menu.

Y ou can create a CodeW ndow for editing the code of any desired method by sending the
message edi t : to the classin which the method is defined. For example, to edit the method for
messaget wi ddl e inclass Munbl e, evaluate

Muinbl e edit: twi ddle
Notice that the argument to this message is a unique-string, the selector for the desired method.

Similarly, to creste a CodeW ndowwith aFi | ePane displaying the contents of filef ,
evaluate

f edit
A new Br owseW ndow (described in the next section) can be created with the expression
user browse
TocreateaNot i f yW ndow (see Section 3) containing the error diagnostic
Sonething is wong
send the message
user notify: 'Something is wong’

The argument is a string to be displayed in the notify window’ stitle area. (Thismessageis used
in compiled code to report error conditions encountered at execution time. It can also be used
to place break pointersin a program as a debugging aide.)

Tocreatean | nspect W ndow (see Section 3) for examining the internal state of agiven
object, send the messagei nspect to the object. For example, to inspect the global symbol
table Smal | t al k, evauate

11

Smal | tal k i nspect

To create anew W ndowwithout having to specify its frame using the mouse, try
W ndow new franme: rect

wherer ect isan object of class Rect angl e.

To use the framing method described above, create a window with
W ndow new newf r ane

In these last two cases, the window must be explicityly included in the window scheduler.
Execute

user schedul e: <wi ndow obj ect >

If you place the cursor in a position outside any window, and press yellow bug, then the menu
that appears contains several useful commands.

exit to overview
qui t

open a subvi ew
open a browser
open a wor kspace
reclaim

Select open a wor kspace to create a new codewindow such as that already described in
Section 1. You can edit the title to reflect the purpose of the workspace.

qui t letsyou leave Smalltalk and return to the Alto Operating System.

r ecl ai mattempts to recompute space consumed by various activities that seem to leave
"garbage" about. It isintended for more expert users.

We will discuss the remaining commands in the section entitled Project View Windows.
EXAMPLE KINDS OF WINDOWS

Dialog Windows

Dialog windows were described in Section 1.

Code Windows An example of acode window is the UserView workspace which is displayed on
the screen of every new Smalltalk release for your convenience, to provide access to the editing
and execution facilities described in the preceding sections. Displayed in the workspace window
are anumber of useful Smalltalk messages which you can execute simply by selecting them and
invoking the yellow-bug command doi t . You can edit the contents of the window to include

12

any other messages you find yourself using frequently. If you need some blank space in which
to work, simply scroll the workspace window past the end of the displayed text.

Y ou can delete all the text to obtain ablank workspace. Do not execute the conpi | e
command. Doing so will cause all future copies of the workspace to be identical to theonein
which you executed conpi | e.

Y ellow-bug commands for text editing are

again
copy
cut
paste
doit
conpile
undo
cancel
align

These were described in Section 1. If you examine the class definitions, you will find that a
CodeW ndow keeps areference to aCodePane, and that the yellow-bug menu, called
edi t nenu, isafield of aCodePane.

Picture Windows

Picture windows are objects of classBi t Rect Edi t or . They are used for "painting" pictures on
the Alto screen, and include facilities for filing and retrieving such pictures. The easiest way to
create such awindow is to evaluate

Bi t Rect new fronuser; edit.

You will be given the origin and corner cursorsin order to specify the rectangular areafor the
window. You will perceive adifferencein defining the area (the rectangle you see as feedback
isnot ablank white one). This reflects the fact that the window isinitially transparent, not
opague. Any screen information overlapping the picture window isincluded in the picture.
Thisisaway of "picking up" an image that can then be stored on a disk file. To understand
this use of transparency, create a picture window and then move it using the blue bug f r ane
command.

Theedi t messageinstallsaBi t Rect Edi t or inthe window scheduler (explained in Section 5)
and starts it up. The editing tools are small icons shown to the left of the picture (tool menu).
These icons represent, in order, the following functions:

draw-thin
erase
strai ght edge

gray- bl ock
pai nt brush
magni fi er

The actions for these tools are displayed above the picture (action menu). The actions are
handled by the class Bi t Rect Tool , an object of which paints on the screen. A tool isa
combination of action, mode, pen-width, gray, and grid. Actionis one of

bl ock-of -gray, draw, straight-edge, magnify.
Mode defines how the tool is combined with the current picture. It is one of
store, or, xor, and
Pen-width is the width of the drawing pen. It iseither 1, 2, 4, or 8.
Gray isone of
bl ack, darkgray, gray, lightgray, white
and grid, the minimun spacing of the mouse points, isone of 1, 2, 4, 8, 16, or 32.

To make painting work, you select atool. A default selection of actionsis given to you. Any
selections you make in the action menu change the definition of the currently selected tool;
these tool settings are shared by all bitRect editors. One heuristic to use would be to ignore the
tools--just keep changing the actions to fill your needs.

The picture window redefines the blue-bug menu to be

nmove
gr ow

cl ose
filout
printbits

fil out createsafile of the bits shown on the screen. The default name for thefileis
Bi t Rect . pi ¢. Thisfilecan befiled into a Smalltalk system.

pri nt bi t s createsapressfilefor printing named Bi t Rect . pr ess and sends thefile to the
printer. Thefile can be reprinted using Enpr ess. r un.

The yellow-bug does nothing.
Font Windows

Font windows are objects of class Font W ndow. They are used for specifying the graphical
representations of text characters on the screen. The best way to find out how to create and use
the font editor is to use the browse window, as explained below, and selecting: the category

13

W ndow, the class Font W ndow, the category Hel p, the messagehel p. You will be ableto
execute the expressions shown there to create new fonts and use currently available ones.

Paned Windows

A paned window is a special kind of window in that it is sub-divided into areas or panes, each
of which might contain a different kind of window. The class PanedW ndow simply
provides away of specifying atemplate for the layout of the subareas and the message protocol
for distributing scheduling and show requests among them. Primary among the kinds of
windows used in a subarea of a PanedW ndow are objects of the classLi st Pane or
CodePane. A CodePane isasubclassof W ndow; as noted before, it handles the yellow-
bug text editing menu described in Section 1. A Li st Pane isakind of Text Fr ane; it
displays avertical list of one-lineitems. Thelist can be scrolled slow or fast, and any item can
be selected. When an item is selected (or desel ected) a dependent pane (subarea of the paned
window) can be told to display appropriate material. Selection is done with the red mouse
button (top or left button). It provides no menu for the yellow button.

The most well-known paned window is the browse window described in the next section.
THE BROWSE WINDOW

The browse window allows you to inspect and modify any program in the system. The browse
window is afive-paned PanedW ndow, with four Li st Panes at thetop and alarger
CodePane below. Oneitem at atime can be selected in each Li st Pane; asusual, theitem
selected is highlighted for identification. Each pane's selection controlsthe list of items
displayed in the next pane. Together, the four list panes reflect afour-level hierarchy of all
classes and their message dictionaries currently defined in the Smalltalk system.

Wake up the browse window and enter itsfirst list pane (the one at the top left) with the mouse.
The pane will show a scroll bar, which you can use to scroll its contents up or down, as
described in Section 1. (Scrolling of list panes differs from that of code panesin a couple of
details: the speed of scrolling is constant and independent of the cursor’s vertical position
within the scroll bar.) Asyou move from one pane to another within the window, only the pane
containing the mouse cursor will display its scroll bar, to show that that is the pane currently
active.

Thefirst pane, called the system pane, lists broad categories of Smalltalk classes, such as
"Numbers', ' Graphical Objects’, 'Windows', and so forth. Select theline Al | Cl asses by
pointing at it with the mouse and pressing the red button until the line is highlighted. The next

pane (the class pane) will display an aphabetical list of al classes currently known to the system.
Now try changing the selection in the system paneto, say, Nunber s; the contents of the class
pane will change to show only the classes belonging to that category (Dat e, Fl oat, | nteger,
Lar gel nt eger, etc.). For an overview of the entire system, select Syst enOr gani zati on in
the system pane: the code pane (the large pane at the bottom of the browse window) will

display alist of all categories of classes currently known, with the classes belonging to each. For

now, do not edit this description. An explanation of how to edit it is given in Section 3.

After selecting acategory (or Al | Cl asses) in the system pane, select one of its classesin the
class pane, causing the third pane (the organization pane) to show the categories of messages
defined for that class. Thelined assDefi ni ti on inthispane causes the code pane to display
information about the structure of the class, such asits superclass and the names of itsinstance

and class variables; selection of Cl assOr gani zat i on resultsin adisplay of alist of theclass's
message categories with the messages belonging to each. When you select one of the message
categories shown in the organization pane, the fourth pane (the selector pane) will show alist of
the messagesin that category. Finally, when a message is selected in the selector pane, the
program for the corresponding method will appear below in the code pane.

Decompiling

Note that Smalltalk sources for al codeis stored on the Woodstock server. Accessing codeis
done over the network. It can therefore be slow. Alternatively, thefile Smal | t al k. sour ces
(from | vy<Snal | t al k>) can be placed on your disk for direct access from Smalltalk. The
penalty isthe large number of pages used up on your disk.

Alternatively, hold down the left shift key when selecting a method. The source code will be
obtained by decompiling from the object code. Asaresult, no comments are displayed.

Editing

All the editing, execution, and compilation facilities discussed for CodeW ndows are available
in the code pane of the browse window. After you have edited the code for a method, the
yellow-bug menu command conpi | e will incorporate the newly edited version into the system,
replacing the previously existing definition for that method. Once the contents of the code pane
have been edited, the browse window will not allow you to make a new selection without either
compiling the method as edited or restoring it to its previous state with the cancel command;
instead, the window will signal you by flashing its code pane on the screen. (The same signal is
asoused if youtry toconpi | e or cancel without having made any changesin the code.)

Y ellow-Bug Commands

Each pane of the browse window has its own yellow-bug menu of commands. Figure 2.1 shows
the organi zation of the browse window and the yellow-bug menus associated with each pane.
An explanation for these commands is given next.

The system pane offers the commandsf i | out and pri nt, both of which cause the code for the
selected category of classesto be written out onto afile. (If no category is currently selected
when you press the yellow button, the pane will flash and no menu will be displayed.) The
difference between the two commands isthat pri nt generatesafile in pressformat, with the
classes in the selected category listed in alphabetical order for human consumption, whereas

fil out writesthemin Bravo format in an order that reflects their subclass dependencies, so that
they can later be read back into Smalltalk and reconstructed. In both cases, the name of thefile

15

16

is derived from the name of the category being filed out, with embedded blanks, if any, replaced
with hyphens. For example, if the category selected is’ Sets and Dictionaries’, filout will write
the code for that category on afile called Sets-and-Dictionaries.st (the extension .st stands for
Smalltalk); pri nt will writeit on afile called Sets-and-Dictionaries.press. (See Section 4 for
more details on printing and filing.)

On the class pane’ s yellow-bug menu are the commandsfi | out, print, andforget. Thefirst
two function exactly the same way as in the system pane, except that they write out the source

code for only one class, the one selected in the class pane. The name of the destination fileis

simply the name of the class--always one word--with the standard extension .st for f i | out , .press

for print. Thef or get command causes the definition of the selected class to be deleted from

the system. When aclassisforgotten, all of itsinstances still in existence become obsolete, and

will no longer respond to any messages. To give you a chance to reconsider, and to protect you

from the dire consequences of invoking the forget command accidentally, the system will open a
notify window with the message Al | <cl asses> wi || becone obsolete if you proceed...
(where <cl asses> isthe name of the class being forgotten). If you are still resolved to forget
the class, confirm the command by entering the notify window with the mouse and invoking the
yellow-bug command pr oceed (discussed in detail in Section 3). The notify window will

disappear and the class will be forgotten as requested.

The organization pane' s yellow-bug menu contains the (by now familiar) commandsf i | out and
pri nt, which work essentially the same way as in the system and class panes. Asusual, the
names of the files on which these commands generate their output are constructed from the

name of the category selected in the organization pane, with hyphens substituted for embedded
blanks and with the extension .st for f i | out , .pressfor pri nt.

Y ellow-bug commands available in the selector pane are spawn and f or get . Thelatter is
equivalent to the same command in the class pane, but causes only the selected message to be
forgotten instead of awhole class. (However, since the consequences of inadvertently forgetting
amessage are not as grave as those of forgetting a class, there is no two-stage confirmation
process--the command is simply carried out when invoked.) The spawn command crestes a
new code window -- with all the properties and capabilities of that window -- containing the
current contents of the browse window’ s code pane (that is, the program for the message
currently selected). When you issue this command, the browse window will go to sleep and the
cursor will assume the form of an origin cursor -- you are now expected to provide the frame for
the new window in the manner already described. The spawn command is useful in browsing
or modifying sets of related messages, since it allows you to display the program for a number of
messages simultaneously, each in its own window. After aspawn, the selector pane's selection
is cleared and the code paneisreset to display the standard template for defining a new message
(these templates are explained in Section 3).

PROJECT VIEW WINDOWS (subviews)

It is possible to organize your work into different projects reflected in the system by a grouping
of windows. When you first resume Smalltalk, you are at the root (top view) of an n-ary tree of
possible projects (see Figure 2.2). Initially, this project view tree has only the single (root) view
in which you have been working. Y ou might have already noticed a rectangular area at the top
of the screen labelling this project view asTop Vi ew.

To create anew view, place the cursor in the area outside any window, press yellow bug and
select the command open a subvi ew. You will then specify asmall rectangle which will
serve as the entrance down a branch of the tree, to anew project view. Edit thetitleto give
your view a unique name.

Enter this subview project window. Y ellow bug hasthe single command ent er . Select it.

You will enter anew screen view, initially empty but for the label at the top of the screen. This
label isonly edited by returning to the level containing its project view window.

To get aworkspace or a browser, select the appropriate command in the yellow bug menu:
open a browser oropen a wor kspace.

To return to the next view up the tree, place the cursor outside any window and selectexit to
overvi ew.

Y ou can create any number of project windows at any project view level, moving down the tree
by entering a project window and selecting ent er on the yellow bug menu, and moving up the
treeby selectingexit to overvi ew.

Y ou edit the name of the project by editing the title of the project window.
Remembering Changes

One significance of the project viewsis that each one owns its own storage (HashSet) named
Changes. Initisstored pairs of class name - message selector for any such message/method
you have edited or created within the context of this project. Examineit with Changes
contents sort. TouseChanges infilingout al changes you make, execute

(dpO file: 'name of file') filout.
Toreset storageuse: Changes init.

Toremoveanitem: Changes del ete: 'class selector’.

17

18.

system class |organization | selector
pane pane pane pane
filout fi{out fi{out ipawn
ori nt pri nt pri nt or get
f or get
code pane
again
copy
cut
paste
doi t
conpile
undo
cancel
align

Figure 2-1.

Organi zation and Menus for the Browse W ndow

E/—Top View
ﬁ D Figure 2-2a.
an n-ary tree structure

each "box" represents
&m a project view

L h’op View |

Workspace |

Figure 2-2b.

Classes I

The initial view of
project: "Top View"

Figure 2-2. Organization of Project Views

19.

3. Defining and Debugging
Class Definitions

Defining a Class

To define anew class, select aclass category in the first pane of the browse window. This
selection specifies the category to which the new class will be added, and causes atemplate to
appear in the largest pane of the browse window, the code pane. (If none of the existing
categoriesis suitable, anew category may be added by selecting Syst entr gani zat i on and
editing it, as described below.)

The template presented in the code pane looks as follows

Class new title: 'Nanmeof d ass’
subcl assof: Obj ect

fields: 'nanes of fields’

decl are: 'nanes of class vari abl es’

To define anew class, replace Naneof C ass by the appropriate name, leaving the quotes
intact (thisisastring).

If the new classisto be a subclass of a class other than just the class Obj ect , replace Obj ect
by the desired superclass. (Note, thisis not a string).

Replacenanes of fi el ds by nothing if this class has no fields (instance variables) other than
those inherited from its superclasses, or by as many field names as desired, separated by spaces
(not commas!). The result is either an empty string or a string of field names.

Similarly, replace names of cl ass vari abl es by nothing if this class has no class variables, or

by as many class variables as desired.

For example,

Class newtitle: ’'Record

subcl assof: Dictionary

fields: ’nane address tel ephone’
decl are:

Once the editing is completed, depress the yellow mouse button and select conpi | e from the
menu which is presented. The new class which you have defined will be added to the
designated category. When you re-select that category in the first pane of the browse window
(re-selection is forced on you by the manner in which the panes are refreshed after compilation),

your new class name will appear in alphabetical order in the second pane.

20

Defining a Category

To create a new category to which you want a new class to belong, select
Syst enr gani zat i on inthefirst pane. The code pane will befilled by parenthesized
expressions like the following:

(" Kernel O asses’ O ass Context Object UserView Variabl eLengt hC ass)

The quoted part is the category name; the remaining names are of the classes which belong to
that category. The order in which these parenthesized expressions appear determines the order
in which the category names will appear in the first pane of the browse window. To insert a
new category, simply insert a parenthesized expression whereever you want the category to
appear. This expression may consist of just the quoted name of the category, or may aso
include the names of one or more classes aready defined. Class names may appear in more
than one category.

Compiling the new category list will cause your new category to be visible in the first pane.
Y ou can then select it in order to define a new classto belong to that category.

Defining a Message

To specify a new message for a class, select the classin question in the second pane of the
browse window. Thiswill cause the third pane to display

Cl assDefinition
Cl assOrganzi ation
"as yet unclassified

if the classis newly defined.

Selecting Gl assDef i ni ti on will present in the code pane the template which you just

completed, specifying the superclass, fields, and so on. Y ou can change this definition with
varying results. For example, you can append new fields; if you insert or delete fields, then all

methods will be recompiled. Selecting G assOr gani zat i on will present

"this class has not yet been comented’
(’as yet unclassified)

in the code pane. The two lines of thistemplate are invitations for further information. The

first lineis arequest for quoted comments describing the class. These comments may be as long
asyou like. Especialy useful isadescription of how to create a member of the class. The

second line is a parenthesized expression exactly like that described above for

Syst entr gani zat i on; itinvitesyou to classify the messages your new class will understand.
The quoted part is the name of the classification; this may be followed by alist of message

names that have already been defined. Typically you type none unless you are reorganizing

your message categories. Also, you can have as many message categories as you find necessary.

21

To specify anew message, select a category, suchas’ as yet uncl assifi ed’ ,inthethird pane.

Thiswill cause the following template to appear in the code pane

Message nanme and Argunents | tenporary variables "short coment™”
["long conment if necessary"

Smal | tal k

St at enent s]

After editing this template to replace the message pattern, list of temporary variables (separated
by spaces), comments, and method (Smalltalk statements), select conpi | e in the yellow-bug
menu. The message selector will appear in the fourth pane of the browse window. By browsing
through the class definitions already in the system you will see many examples of this message
format.

Selecting any message selector from the fourth pane will cause its program to be displayed in
the code pane. The program can be modified and then compiled.

Debugging Aides: Notify and Inspect Windows

Two specia kinds of windows, notify and inspect windows, provide a variety of facilities for
debugging and error anaylsisin Smalltalk-76.

Notify Windows

When an error occursin the execution of a Smalltalk program, a notify window will appear in
the approximate center of the screen. Thetitle area at the top of the window gives a brief
description of the nature of the error; the contents of the window itself identify the context in
which the error occurred, in the format

MessageC ass(Recei ver d ass) Sel ect or

where Sel ect or isthe name of the Smalltalk message causing the problem, Recei ver C ass is
the class of the object to which the offending message was sent, and Messaged ass isthe
classin which the method corresponding to this message is defined. Notice that

MessageC ass will dwaysbeeither Recei ver O ass itself or one of its superclasses. If the
two classes are identical, the abbreviated format

Messaged ass Sel ect or
isused.

When you frame a notify window (select the f r ane command in the blue-bug menu), it opens
into aPanedW ndowwith six panes. Down the left side arethree Li st Panes, which we call

stack pane

22

context variable pane
instance variable pane.

On theright are three corresponding CodePanes, the

method pane
context value pane,
instance value pane.

Yelow-bug: stack command

The yellow-bug menu for the stack pane contains the commands needed to expand the
information in these six panes. Initially, the stack pane contains a single line identifying the
context of the error in the format described in the preceding paragraph. The yellow-bug
command st ack in this pane expands the pane’s contents into a scrollable list of contextsin the
same format, representing the dynamic state of the control stack at the time of the error.

Selection in the stack pane

If you now select one of these contexts with the red button, information about that context will
appear in the remaining panes of the window:

The method pane will display the Smalltalk code for the interrupted method, the context
variable pane alist of arguments and method variables local to that method, and the instance
variable pane alist of the instance variables (fields) of the object executing the method. Each
pane can be scrolled in the usual way. You can display the value of any of the listed variables
by selecting the variable name with the red button: its value will appear in the adjacent value
pane. Any Smalltalk expression you evaluate (using the doi t command) in one of the code
panes will be evaluated in the stack pane's currently selected context. This often makes it
possible to recover from an error by assigning new values to one or more context or instance
variables and proceeding or restarting, as described below. For acloser look at the contents of
an instance or context variable, select the variable name and invoke the yellow-bug command
i nspect inthe variable pane--thiswill allow you to create an inspect window for examining the
internal state of the object to which the variable name refers.

Y ellow-bug menus

Each of the panes has its own yellow-bug menu. The stack pane menu has been described
above. It contains

st ack
spawn
pr oceed
restart

23

24

The context and instance variable panes have a menu containing only the single command
i nspect.

The remaining panes are CodePanes; they offer all the usual facilities for editing, executing,
and compiling Smalltalk code (see Section 1).

Y ou can inspect the code for any interrupted method simply by selecting the desired context in
the stack pane. If you need to view two or more such methods at once, use the stack pane’s
yellow-bug menuto spawn aseparate code window for each method. After you have
diagnosed the cause of the error, you can edit and recompile the offending method or methods
and continue in any of three ways:

- Select a context in the stack pane and invokethe pr oceed command on that pane's
yellow-bug menu. Execution will proceed in the selected context from the point of the
error.

- Select acontext as above and invokethe rest art command. The method running in that
context will be reexecuted from the beginning.

- C ose thenotify window. The context of the error will be lost and you will be returned
to the top level of the user interface. Y ou can then re-issue the message that originally
caused the error, or do whatever el se seems appropriate in the circumstances.

Initsoriginal form, before it has been framed, a notify window consists of a single pane,
corresponding to the stack pane in the window’ s expanded form. All the stack pane’s yellow-

bug commands--st ack, spawn, proceed,and rest art --are available when the window isin
thisform. Thusit is sometimes possible to save time and recover from the error without

invoking the frame command.

Inspect Windows

An inspect window allows you to "reach inside” an object and examine or change itsinternal
state. It consists of two panes, alist pane called the variable pane and a code pane called the
value pane. The variable pane lists the names of the object’ s fields (instance variables):
selecting one of these names with the red button causes the current contents of that field to be
displayed in the value pane. (If the object being inspected belongs to a variable-length class, the
variable pane will contain element numbersinstead of field names. For an object with more
than fifty elements, only the first twenty and the last twenty will be listed.) Any expression
executed in the value pane is evaluated in the context of the object itself, so that the value of

any of itsfields can be set by simple assignment. The variable pane’s yellow-bug menu contains
the single command i nspect , which creates a new inspect window for the object contained in
the currently selected field of the original object. By repeatedly invoking this command, you can
"dig," alevel at atime, into an object’s structure.

25

4. Printing and Filing out
from Smalltalk

To print al the information associated with a class -- its description, the messages to which it
will respond, and the methods which these messages invoke -- select the desired classin the
second pane (class pane) of the browser and depress the yellow button to bring up a menu
which will look as follows:

fil out
print
f or get

Selecting pri nt inthismenu will result in the preparation of a press file named classname.press
where classname is the name of the selected class. When the printer is unknown or not

available, a message appears in the system Dispframe and a menu of possible printers appears at
the center of the screen. The printer which you select the very first time will be your default
printer, e.g. MENLO. Subsequent selections do not change this default. 1f the menu appears
again, select the same printer, or adifferent printer, or none, which appears as the last option.
The screen will go black during this process. The pressfile will be left on your disk at the end

of thistransaction.

Selecting f i | out inthe menu will result in the preparation of a Bravo format file named
classname.st which iswritten on your disk. Thisfile may be printed by transferring it to a Bravo
disk, if you desire, but its main usefulnessisthat it may be filed into a new Smalltalk system
(the pressfile cannot). To thisend, it is better to print the class on the samefile asits
superclasses using the pr i nt command in the first (system) pane.

Categories of classes (in the first, system, pane of the browser window) also respond to pr i nt
andfil out. Inthiscase, al classes categorized in the selected category will be printed or filed
out. The difference between the two commandsisthat pri nt generatesafilein pr ess format,
with the classes in the selected category listed in aphabetical order for human consumption,
whereasf i | out writesthem in Bravo format in an order that reflects their subclass dependencies,
so that they can later be read back into Smalltalk and reconstructed. In both cases, the name of
thefile is derived from the name of the category being filed out, with embedded blanks, if any,
replaced with hyphens. For example, if the category selectedis’ Set s and Di cti onaries’,
fil out will writethe code for that category on afile called Sets-and-Dictionaries.st (the extension
&t stands for Smalltalk); pri nt will writeit on afile called Sets-and-Dictionaries.press

The organization pane’s yellow-bug menu contains the (by nhow familiar) commandsfi | out and
pri nt, which work essentially the same way as in the system and class panes. Asusud, the
names of the files on which these commands generate their output are constructed from the

name of the category selected in the organization pane, with hyphens substituted for embedded
blanks and with the extension .st for f i | out , .pressfor pri nt .

Press files which are no longer needed may be deleted from within Smalltalk by executing the
expression

(dp0 file: "cl assnane. press’) delete

If you wish pressfiles to be deleted automatically after printing, you may modify the standard
Smalltalk release asfollows. For classes, modify class Cl ass by changing the method for the
message pr i nt out to read:

dpO delete: title + '.press’

For categories of classes, modify class Syst entr gani zer by changing the method for the
message pr i nt Cat egor y to read:

dp0 delete: (cat + '.press’) as FileNane

Tosend pri nt out toaprinter different from the default, modify class Pr essf i | e by changing
the method for the messaget oPr i nt er from

self toPrinter: PrinterNane
to
self toPrinter: ' over’ (orother name of printer)
Alternatively, change the value of the object Pri nt er Name
PrinterNane _ 'Menlo’.

If your chosen printer is not available (e.g., thereis atime out in the attempt to transmit the
information), then the system will inform you of the situation and present a menu of all the
printers from which you can select anew choice for this transmission only. Y ou might choose
to retry the same printer.

26

SUBCLASS STRUCTURE

Object

Array
CorelLocs
Interval
Paragraph
TextEntity
String
UniqueString
Natural
Substring
V ector
BitBIt
BitRectTool
Class
VariablelL engthClass
ClassOrganizer
SystemOrganizer
Context
RemoteContext
Cursor
Decompiler
Dict
File
AltoFile
WoodstockFile
JuniperFileController
FileDirectory
AltoFileDirectory
FtpDirectory
Juniperinterface
WoodstockFileDirectory
FilePage
AltoFilePage
EtherFilePage
WoodstockFilePage
JuniperPageBuffer
DictionaryEntry
Etherworld
ExceptionHandler
FieldReference
FontWindow
Form
FormSet
Generator
HalfToner
HashSet
Dictionary
Symbol Table
MessageDict
JuniperParameterBlock
Juni perRequestParameterBlock

5. Smalltalk
Objects

27

Juni perResultParameterBlock
Menu
MessageTally
Number
Date
Float
Int32
Integer
Largel nteger
MachineDouble
ObjectReference
Pacbuf
ParagraphPrinter
BravoPrinter
PressPrinter
ParagraphScanner
ParsedA ssignment
ParsedConditional
ParsedConjunct
ParsedDisjunct
ParsedFiel dReference
ParsedL oop
ParsedM essage
ParsedNegation
ParsedObjectReference
ParsedRemote
Parser
ParseStack
Point
UserEvent
PressFile
Prioritylnterrupt
PriorityScheduler
RadioButtons
Reader
Rectangle
BitRect
RemoteParagraph
ScrollBar
Socket
RetransmitSocket
NameUser
RPPSocket
EFTPSender
WSocket
JuniperSocket
RoutingUpdater
Stream
Dispframe
FileStream
ParsedBlock

PQueue
SafeQ

EventQueue

Queue

Set
Image
Bitlmage

28

Document
Heading
Path
SetReader
Textframe
ListPane
ClassPane
OrganizationPane
SelectorPane
StackPane
SystemPane
VariablePane
Textimage
BorderedText
ParagraphEditor
TextStyle
Time
Timer
TokenCollector
FieldNameCollector
Turtle
PressTurtle
UserView
VirtualMemory
V mapper
WidthTable
Window
BitRectEditor
CodePane
DocumentEditor
FilePane
PanedWindow
BrowseWindow
CodeWindow
InspectWindow
NotifyWindow
ProjectWindow
SyntaxWindow

29

SMALLTALK GLOBAL OBJECTS

Globalsyou should know about

BitBIt Colors

background
black
dkgray
gray

Itgray
white

BitBIt Modes

erasing
oring

storing
xoring

Cursor Shapes

CornerCursor
DownCursor
Normal Cursor
OriginCursor
ReadCursor
UpCursor
WaitCursor
XeqCursor

File Directories

dp0
dpl
dpw
dpj

User interface

Changes
user
NotifyFlag
Undeclared

Miscellaneous

DefaultTextStyle
mem

Smalltalk

Y

Top
PrinterName

Integer
Integer
Integer
Integer
Integer
Integer

Integer
Integer
Integer
Integer

Cursor
Cursor
Cursor
Cursor
Cursor
Cursor
Cursor
Cursor

AltoFileDirectory
AltoFileDirectory

WoodstockFileDirectory

Juniperinterface

HashSet
UserView
Object
Symbol Table

TextStyle
CorelLocs
SymbolTable
MessageTally
PriorityScheduler
String

Globalsyou may run into
User interface

AllClassNames
defaultBitRectEditor
Events

kbMap
sysFontWindow
SystemOrganization

Miscellaneous

IntervalFrom1By1
nullString
PressScale
UpperCase

Vector
BitRectEditor
EventQueue
String
FontWindow
SystemOrganizer

Interval
String
Integer
String

Globalsyou should never run into

Pools

AltoFilePool
ByteCodes
FilePool
TokenCodes
WoodstockFilePool
EtherPool
JuniperConstants

Virtual Memory

BitMasks
FirstContext
Flushed
Pmap
Specia Oops
Vmem

Compiler

FilinSource

Huh

HuhFlag

M ethodK eeper

M ethodK eeperK eeper
UST1

USTable

WhatFlag

Miscellaenous

Counter
FontDict
ThePicture
Xlate
Xlated

Symbol Table
SymbolTable
SymbolTable
SymbolTable
Symbol Table
Symbol Table
Symbol Table

Symbol Table
Context

Object
VirtualMemory
Vector
VirtualMemory

Object
String

Object
Stream
Object
Vector
Vector
Object

String
Dictionary
Object
String
Vector

1to: 32767 by: 1

32

31

6. Scheduling Round-Robin Fashion

The job of managing the Smalltalk window interface -- deciding which window is awake and
relaying information to that window about user actions with the mouse, keyboard, and keyset -- is
one of the services provided by the ubiquitous special object user . In one of itsfields, called
sched, user maintainsalist of all windows and other kinds of objects currently active on the
display screen.

A window w can be brought into existence by executing the expression
w _ W ndow new newfrane.

Thiswill supply an origin cursor with which you can frame the window (as described in Section 2).
The window w can then be placed on the list sched by executing one of the following:

user schedule: w
user schedul eOnBottom w
user restartup: w

Thefirst expression places w at the front of the sched, the second placesit at the back. Thethird
isthe same as the first except that Smalltalk returns to the top level (asin CTRL-SHIFT-ESC or
user restart),thecursorisforced into the window w, and the window isimmediately awakened.

To remove (the first occurrence of) wfrom sched, execute the expression:
user unschedule: w

The order in which windows are listed in the list sched determines their relative "depth" as they
appear to you on the screen: objects listed earlier in sched appear nearer to the "front" of the
display, and may overlap partially or completely hide those further back insched. Whenever a
window wakes up, it is "promoted" to the beginning of sched (and therefore to the front of the
screen), and all windows previously ahead of it are moved back one position to make room.

To"live" insched, an object must be of a"schedulable type". To qualify as schedulable, it must
understand three messages. firsttine, eachtine,andl astti me, which mean, approximately,
"Do you want to wake up?' "Do you want to remain awake?' and "Go to sleep”. Methods for
responding to these messages are defined in class W ndow, so any object belonging to a subclass

of W ndow -- such as Br owseW ndow, CodeW ndow, or Not i f yW ndow -- will

automatically understand them. (The subclass may, of course, override W ndow s methods with
definitions of itsown.) An object in sched needn’t actually be awindow, aslong asit knows how

to behave like one by responding to these three messages. The "dialog window," for example,
belongsto classDi spf r anme, which is not a subclass of W ndow; but since it understands the
messagesfirsttine, eachtime, andlasttine, it ispefectlyahomeinsched.

Themessage | ast ti me should returnsel f if it wants the scheduler to select the next window to
awaken by scanning sched in the normal top-down order. It should return f al se if it wantsthe

32

33
scheduler to scan sched in bottom-up (reverse) order. The latter is appropriate if the window got
put to sleep by the user’ s invocation of the UNDER command in the blue button menu.
HOW THE SCHEDULER WORKS

Theinformation above should be enough for you to get going with scheduling windows. If you
have difficulties using the scheduler, you may want to read the rest of this documentation, which
describes its operation in more detail.

A context installed in Smalltalk’ s top-level priority scheduler drives the window interface by
repeatedly sending the message

user run

user’ s method for responding to this message is as follows (paraphrasing dightly for simplicity):

run | i w
[while true do
[i _ 0.
until ((i _i + 1) > sched length or

(w _ sched i) firsttine) do [].
i > sched length []
sched pronote w.
while w eachtine do [].
w | asttine]]

This method consists of a single outer loop, to be repeated as long as true is true -- in other words,
forever. On each pass through this outer loop, theinner unt i | loop scansthrough the list sched,
sending each window (or other object) the messagef i r st ti me, meaning "Do you want to wake
up?' The answer is up to the window itself to decide, usually by asking its screenf r ane (an

object of class Rect angl e) whether it contains the current location of the mouse cursor. (Notice
that, since sched is scanned from front to back, the window that wakes up will be the foremost
window containing the cursor.) However the window arrives at its decision, it will respond to the
messagef i r st ti me with thevaluef al se if it wantsto remain asleep, t r ue (that is, any value other
than false) if it wantsto wake up. In addition, if the answer ist r ue, the window will perform any
actions it considers appropriate upon awakening, such as repainting itself on the screen (overlaying
any other windows appearing in front of it), highlighting a selection, growing a scroll bar, or
whatever else a particular flavor of window may require.

The scan through sched continues until either the end of sched isreached or one of the windows
answerst r ue tothemessagef i r st ti me, meaning "Yes, | want to wake up." In the former case,
the next line of the method says to do nothing and repeat the outer loop, restarting the scan at the
beginning of sched. If, on the other hand, the scan ended because window w asked to wake up,
user asksitssched to promote wto the front, then enters another loop that says "Keep sending

w the message eacht i ne, and do nothing as long asthe answer ist r ue." The window will

answer eacht i me witht r ue or f al se, indicating whether it wants to remain awake or go to seep;

if it chooses to remain awake, it will also perform any chores associated with doing its thing," such
as interrogating the mouse and keyboard and responding as appropriate. Thus, although the inner
whi | e loop of the method above has a null body, the repeated execution of the message

w eachtine

asitstermination test causes the window to transact its normal business. When the window decides
to go to sleep (for example, if amouse button is pressed outside its frame), the loop terminates and
the next line is executed, sending the window the mesagel astti ne. Thisinstructsit to close up
shop and go to sleep, and it will comply after itsfashion. The outer loop of theuser r un method
will then be repeated, initiating another scan through sched.

The description just given of user’ s window-scheduling algorithm is accurate in its gross outlines,
but in real life matters are complicated by some wrinkles. For example, ther un messageis
actualy r un: , and takes an argument, called t opFl ag. A non-false argument value means that the
window on the front of sched is already awake, and that sched should not be scanned until this
window decidesto go to sleep.

