Draft O Smalltalk: Dreamsand Schemes Chapter VI May 11, 1979

VI

Technical Characteristics
of Smalltalk-76

Since the first Smalltalk was outlined in 1972, we have produced four inplenentations of
significance (over 1000 hours of use each) on several different hardware systens. To va
degrees, the | anguage has supported the object-oriented framework, always making it poss
us to explore the nature of a useful and usable personal conputing environment. The |an
kernel that is defined in this chapter was proposed in 1976 after several years of desig
i mpl enentation. W have thus ternmed the | anguage, Snalltal k-76. W have separated the

description of this particular |anguage kernel, as provided in this chapter, fromthose

and later Smalltalks: the history of inplementations can be found in Chapter X, discus

user interface issues is provided in Part 2; all of Part 3 is devoted to the future.
System Layering: A Review

The system can be viewed as consisting of several |ayers, each built on the | ower |ayers
bottomis the implementation machine, a set of interconnected physical devices. On this is bt
a kernel system t hat provi des the essential functions of Smalltalk: the creation and nainte
of objects and their interaction by exchangi ng nessages. The kernel of Smalltalk is an

system made up of objects organized into classes. It includes objects called classes t hat

and mai ntain other objects, objects called methods t hat describe the interaction of object
obj ects cal | ed activations that performthe interaction described by nethods. A nmethod is &
sequence of nessage descriptions and/or descriptions of transformations of state informa

Note that we use the word "nethod" to avoid connotations associated with the nore tradit

"progrant or "procedure". These objects--classes, methods, and activations--make it pos
boot strap the behavior of other objects since these other objects can be created by a cl
then can have any kind of behavior as the result of an activation performing a nmethod th

descri bes that behavior

The next |evel of the systemis a bascsysem that provides certain conveniences for intere
with objects and for describing new kinds of objects. 1In specifying the basic system w
a syntax for expressions and for the ways in which nethods are built from expressions.
basic Smalltal k-76 systemincludes a conpiler and graphical facilities for handling user
interactions. Additional objects provided in the basic systeminclude class Dictionary;
Nurmber, with its subcl asses Integer and Float; and class Array, with its subclasses Stri
Uni queString, and Vector; and, to support user interaction on a display screen, the clas
Poi nt, Rectangle, and UserView. A nunber of classes exist in the basic Smalltal k-76
systemin order to support the conpiler; they are presented in the next chapter on conp
nmet hods (Chapter VII, Encoding). Descriptions of classes for user interactions are give

chapters in Part 2.

Program execution was dealt with in Chapters Il and 1V; we concentrate here on the kern
basic Smalltal k-76 systens. In the next sections, we provide a definition of the syntax

Smal I tal k-76 with sinple exanples. Mre extensive exanples are found in Chapter Vill

The Kernel System
As descri bed above, the kernel system consists of classes, instances, nethods, and activ
An Example Method

A class only understands a nessage that has been included in its nessage dictionary, i.e
nmessage for which a correspondi ng nethod has been specified. For exanple, class Diction

enpl oys the followi ng nmethod to respond to | ookup nessages.
| ookup: nane | x
[x _ self find: nanme [values] fal se]

Smal ltalk-76 is easier to discuss if the special characters are pronounced as foll ows.

(silent)
| wth tenmporary vari abl es
[begin
] end

gets

then only

return val ue

subscripted by or sub

A met hod begins with a messagepattern, in this case, |ookup: name. The colon character (:)
whi ch is not pronounced, indicates that an argunment follows, i.e., nane. There is also
tenmporary variable called x that is not an argunent but is used within the method to ass

executi on.

The body of a nethod is a block of Snalltal k statements t hat provi des a procedural
i npl enentation of the method. Expressions in Smalltalk are usually enbedded in nethods

class definitions.

The body of the nmethod above consists of a singl e conditional statement.

x _ self find: name [values x] fal se
A conditional statement has three parts: a condition followed by a right arrow, ; a tr
alternative enclosed in square brackets; and a false alternative. In the above exanple

parts are:

x _ self find: nanme

This is the condition part.

In this statement, the nessage find: name is sent to the dictionary itself (naned

usi ng the pseudo-variable self). W expect this nessage to return the | ocation of

nane within the field objects, i.e., an integer subscript i such that objects i
nane. |f there is no such i, it returns the special constant false.
The value returned is assigned by the synbol _ to the tenmporary variable x. An

assi gnment statement has a val ue, which is the val ue assigned.

The condition of this conditional statenment is considered false if the value of tl

assignnment was false, and is considered true otherw se.
val ues X
This is the true alternative part.

This statement is executed if and only if the condition is not false. It sends tl
nessage X to the field values. W expect that this nessage returns the xth elen
of values. The synbol causes the result to be returned as the value of the curr

nmet hod.
fal se
This is the false alternative part.

This statement is executed if and only if the condition is false. It returns fal:

val ue of the current nethod.

The Pseudo-variable super

The pseudo-variable super is, like self, provided automatically to every method. A ness
sent to super goes to the currently running instance with the caveat that the nessage-di
| ookup starts at the superclass of the class whose nethod is being perforned, instead of

class of self.

The Basic System
Creating Objects: the Message new

A new instance of a class is created by passing its class the nmessage new. The class a
the property dictionary for the new instance, initializes each value in the dictionary t
constant nil, and returns the object. Usually the new object is then passed additiona

toinitialize it fully.

A new class is created by creating a new instance of class Cass, i.e., by passing the c
the message new. This nessage is foll owed by nessages informng the new class of the na

of its title, its fields (instancevariables), names of properties shared by all menbers of the

(classvariables), nanes of any variables to be shared with other classes (poolvariables), and

references to a supercl ass.

Suppose we create a new class whose nane is Customer as a subclass of Dictionary. It w
add instance vari abl es name, address, tel ephone as the identication information for the
dictionary; and one class variable, instCount, which will be the tally of all instances
Customer ever. (lts superclass, Dictionary, you will recall, has one field, values; its
supercl ass HashSet has one field, objects.) In order to create this new class, we send C

a nessage.

d ass newtitle: ’Customer’
subcl assO: Dictionary
fields: 'nane address tel ephone’

decl are: ’'inst Count’

Now a custoner may be created by the statenent

Cust orer new

The statenent Customer new results in a new instance of the class. Suppose in the nessa

dictionary of the class Custonmer there is a nessage pattern init. Then a new instance n

be passed an additional nessage requesting that the instCount be updated.

Customer new init

In Snal |l tal k-76, special consideration is given to this need to initialize instance vari
nodi fy class variabl es whenever a new instance is created. The follow ng expression is

equi valent to the one above

Custoner init

Suppose we create two instances of class Custonmer which we will call A and B. Each
i nstance contains a property dictionary such that if A changes its address field, the ad
field for B does not change. Both A and B refer to the sane class variable(s) so that if

i ncreases the value of instCount, then B will also be affected by that change.

M odifying the M essage Dictionary of a Class

A class is told to associate a nethod with a nmessage pattern by sending it the nessage
under st ands: code cl assified: heading. Various designs for the user interface to the
Smal | tal k programm ng environnent have provided different surface nethods for specifying
nmessage dictionary of a class. |In Chapter () on user aids, we describe a Browser design \
provides a text editor and tenplates for creating classes and addi ng nessage patterns wi
correspondi ng nmethods; in Chapter (), we describe a tenplate | anguage as the surface sy
In each case, however, the class Class nust ultimately be sent the nessage under st ands:

code classified: heading informng it of the nessage pattern and its nethod.

Activations

Each net hod can decl are temporaryvariables t hat can be used during the execution of the
met hod. These variabl es are destroyed autonatically when the nethod execution is ternin

The syntax for defining methods in Snalltalk-76 is detailed in a later section.

If we now send a nessage such as cust growby: 5, a new object that we call an Activation
created. This new object contains a dictionary for storing the names and val ues of the
tenporary variables of the method that is currently being executed. Smalltal k-76 systen
supports four kinds of object variables in the creation and use of objects: class, poo

and tenporary (or nethod).

Object Life

No facilities are provided in Smalltalk-76 for explicit deallocation. An object is dest
automatically when no reference to it exists. Thus, the programmer is generally freed f
concern with deallocation. However, if an instance points to itself, or if it is part o
structure, then Smaltlalk will never realize that it can be deallocated. Therefore, if

structure includes cycles or back pointers, then when it is no | onger needed, the progra

must explicitly renove the pointers (typically by changing themto the constant nil).

The Basic System: Syntax

We had several goals in mnd when we designed the syntax of Smalltal k-76. To begin with
had to be conpilable (the previous Smalltal ks were not). O course it had to support th
of sending nessages to objects. CQur previous experience with Smalltal k and ot her systen

the foll owi ng additional considerations:

1. W liked the natural ness of infix expressions |ike 3+4.

2. W liked descriptive names for user-defined nessages.

3. W liked the notion of keyword paraneters to procedures rather than dependi ng on t|
programrer’s nenorizing orderings for each argunent.

We di sliked parent heses because assuring proper matching can becone frustrating.
W |iked the notion of symetric read/wite messages.

W wanted to allow a series of nessages to the sane object to be sent concisely.
W& wanted the syntax to include control, and to allow the user to define his own ¢
nessages.

No ok

G ven these desires, the syntax which resulted is nostly a case of formfollow ng functi
this section we will first treat the syntax for expressions, and then describe the way i

met hods are built from expressions.

Identifiers and Constants

In Smal |l tal k, an idewtinfiber any sequence of letters and digits which begins with a letter

By convention nultiple word identifiers use capitals at the word breaks; variables for

definitions begin with a capital letter. Here are sone exanples.

a r2d2 | ast Pi ct ur e®dvangl e

Smal | tal k- 76 recogni zes constant nunbers, strings, nanes, and lists (as will be defined

are instances of class Number, String, UniqueString, and Vector, respectively).

A constant nunbés written as an unbroken sequence of digits. |If the number is negative,

preceded by a "high minus" sign: . |If the first digit is 0, the rest are in octal radix

0 6 32767 32766 0377 0177777 0100000

The constant 0940 is an incorrect nunber.

A constant floating point nwraritten as a deci nmal -radi x nunber constant immediately

foll owed by a decinal point (a period) and one or nore decimal digits. After the last d

be an exponent of the forme followed by a decinmal -radi x nunber constant.
0.0 3. 14159 32766. 32767e 32766

Incorrect floating point nunbers include
0. 6. . 31415927el

A constant striisigwitten as an arbitrary sequence of characters enclosed in apostrophes.

i ncl ude an apostrophe in the string, it is necessary to wite two in a row

a’ 'it costs $4.50" ' They said, '’Yes!'’
It is not correct to wite

"They said, ’Yes!’

A constant nanes either a sequence of letters, digits, and colons not starting with a di¢
any other single character except a parenthesis. It is preceded by the synbol unl ess

enbedded in a constant |ist.

+ , Hel p printon:

I ncorrect constant nanmes include

) 12

The difference between a constant string and a constant nane is that no two instances of

contain the same characters. They are sinmlar to atoms in the |anguage LISP.

A constant listwitten as an arbitrary sequence of constants encl osed in parentheses. |

preceded by a wunless it is enbedded in another constant |ist.

@) (0 6 32767) ((14 Help) 'arbitrary text’)

I ncorrect constant lists include

(14 Help) (1 2 (3 4]

There are a few predefined standardicospehhtsl k; they are the only instances of class

bj ect :
ni | It is the default initial value for an identifier.

false Anything else is effectively "true".

true It is useful as a "true".

To send a nessage, one comnmposes an expression which has a receiver part (itself an expre

and a nmessage part.
recei ver nessage

As in other programm ng | anguages, an expression can be evaluated according to certain rule
order to yield a value The value of every Smalltalk expression is an object (or, nore pt
a reference to an object). The receiver part is sonmething that evaluates to the object

recei ve the nessage. The nessage part consists of a messagename or selector fol |l owed by zer

or nore paraneters. The nessage nane can be any constant nane.

There are three basic forns of a nessage: unary, binary, and keyword. A unary nessage
contains no paranmeters, a binary nessage contains one paraneter, and a keyword nessage
contains one or nore paraneters. The valence of a nessage is equal to the nunber of

paraneters it requires.

Unary M essages

The nane of a unary nessage is called a unarysedlector; syntactically, it is sinply an ident
X center next show new

Exanpl es of using these nessage parts in an expression are
pt x rect center st rm next rect show Rectangle new

The convention of a left-to-right parse neans that a sequence of sinple nessages such as

angl e asFl oat asRadi ans cos

10

is interpreted as:

((angl e asFl oat) asRadi ans) cos

that is, (1) send the unary nessage asFloat to the object identified as angle, obtaining
nunber; (2) send asRadi ans to that nunber, performing a degree-to-radian conversion, an

finally, (3) send cos to that result to obtain the cosine.

Binary or Infix Messages

To allow infix expressions like 3 + 4 and a < b, we define infix nessages as those whose
sel ectors are single non-al phabetic characters such as + - < = > and . (Not e that
| ast character, , is typically used to denote subscripting.) W adopted the convention
first termof an infix expression is the receiver; the nessage consists of the infix op
val ence-1 selector, with the second termas its paraneter. Thus a < b neans that a wll
the nessage < with paraneter b. One can see howto conpile this in a perfectly reasonab
but there is need of a further convention to say what 2 * a + 1 neans. Since users woul
adding their own infix operators, precedence would be too confusing here, and we establ

that the parse would be left-to-right. Thus 2 * a + 1 neans (2 * a) + 1

Keyword M essages

In sone conventional programm ng | anguages, the notion of passing paraneters by keyword

al l ows procedure calls of the form

call draw (thickness=2, angl e=45, |ength=1.414*base)

This saves the programer from having to know the order in which the procedure expects t
paranmeters. It can also provide for defaulting (for instance, in the exanple, a fourth
color, might be expected; if omtted, it would default to sone color such as black). T
approach has been used in several applications systens, and also in the IBMs Job Contro
Language [referencel . We had been | ooking for a way to represent messages with multiple
paraneters, and we thought that by stringing all the keywords together, the agglutenatio

represent a selector of nultiple valence. For exanple:

pen thickness: 2 angle: 45 length: 1.414*base

11

Here pen is the receiver. It receives the nessage thickness:angle:length: which has a

val ence of 3. This form provides the readability of keywords, and is also free of the p
and commas used in the conventional form Leaving the matter of defaults aside, this te
has another nice property: the valence of the selector is nanifested by the selector it
when a sel ector has been found in a nessage dictionary, the associated nethod is guarant

be expecting the right nunber of argunents.
A keyword, then, is sinply an identifier with a trailing colon. For exanple
del eteChars: to: by: from pai nt

The actual selector in the keyword nessage is the concatenation of the keywords, in orde

exanpl e, in the expression
1to: 10 by: 2

the selector is to:by:, its valence is 2, and the paraneters are 10 and 2. Here, the ne

sent to the nunber 1, resulting in an ordered collection of nunmbers: 1, 3, 5, 7, 9.

There are two aspects to the keyword organization which we have not actually pursued, athough we did
plan for them in the design. Thefirst isthe possibility of sorting the agglutenated parts in the compiler,
so that they can be used in any order by the caller. One of the reasons is that much of our accessto the
system is done by selecting choicesin alist of aphabetized messages, and this gets difficult if the selector

parts get reordered.

The other possibility which we have not implemented is that of furnishing defaults for omitted keywords.
Thiswe plan to handle in one of several ways, for example, by a procedure which intercepts the case of a
message which is not recognized by the receiver. Before announcing an error, this procedure would look
in the receiver’s message dictionary for any other selectors which included the parts of the unrecognized
selector. If so, it would prompt the user for avalue to use for each of the missing parameters, and then

compile these into a definition for the short version which then calls the full version.
Precedence

In order to allow conpl ex expressions to be assenbl ed without needi ng many parentheses t
det erm ne grouping, we assigned a different |level of precedence to each of the three nes
types. It seened natural for unary nessages to be sent first, then infix, and finally k

nmessages. This neant that arithnetic expressions could be enbedded in keyword nmessages

12

wi t hout needi ng parentheses; also, sinple expressions such as source next, center X, ve
I ength coul d appear in arithmetic expressions w thout needing parentheses. Wthin a giv

| evel of precedence, evaluation runs fromleft to right.

Keyword nmessages can not be witten consecutively, or else they would concatenate into a

selector with a | onger nanme. Thus,
(a mn: b)) max: c

and
a mn: (b max: c)

are quite different from
amn b mx: c

The first two expressions would invoke the selectors nmin: and max:, while the latter wou

i nvoke the single selector mn:max:.

From t he di scussi on above, the reader should be able to parse the foll ow ng expression w

returns true only if the rectangle rl1 is equal to the rectangle r2.
rl origin =r2 origin and: rl corner = r2 corner

This is interpreted by first sending origin to rl obtaining a number nl, then sending or
r2 to obtain a second number n2, and then sending =to nl with n2 as its paranmeter. The
result will be true or fal se depending on whether the two origins are equal. The sanme p

takes place on the right with the corners, and we are left with
<termr and: <terne

whi ch produces the final result to be returned. The introduction of precedence between t
vari ous message categories has been a success in reducing the need for parentheses to a

reasonabl e | evel
Cascading M essages

Anot her extension to the nessage syntax allows for sending a series of nessages to the s

13

receiver as in

recei ver messagel; nessage2; message3.

For exanpl e

figure erase; noveto: dest; show

(artist pen) go: 100; turn: 90; go: 30.

Here the sem col on separates what are referred to as cascadedmessages to the receiver. The
nessages are sent in sequence fromleft toright. 1In the first exanple, the receiver is
receives three nessages, in order: first, erase; second, noveto: dest; and third, sho
The receiver in the second exanple is the result of sending the message pen to artist.

that the parentheses are recommended in order to unanbi guously define the receiver of th
cascaded nessages. The value of a series of nessages is the response fromits |ast ness
however, a cascaded nmessge is not an expression, it is a statenent, so, to use the val ue

put it in brackets.

Read/Write Symmetry

As in nost progranm ng | anguages, there are two fornms of variable access for readi ng and

witing. One uses the identifier to read, and the identifier followed by a left arrowt

ext ent extent _ 10

The identifier (extent) takes on the value of the expression (10). Thus we have a sinp

assignment statenment. |Its value is the value of the assigned expression

There are cases where nessage access cones in read/wite pairs, such as:

obj ect read wite

ith part of a ai ai _ 12

next itemin strm strm next strmnext _ char

fifth field of x x field: 5 x field: 5 strmnext

In order to support this symretry in a uniformway, the syntax allows any nmessage to be
extended by a single term nal store-part consisting of a left arrow and an acconpanyi ng

parameter. The left arrow has a right precedence | ower than any selector, so that any e

14

may followit. The extension results in a totally new nessage which has a left arrow as

character and has a val ence greater by 1. The exanples above illustrate extension appl
each of the basic nessage categories. |In particular, the new selectors fornmed are _, ne
and field: , respectively. In the third exanple, we see that the expression strm next

provides the object that is witten into the fifth field of x.

The formation of a selector using the left arrow notation results in a nessage; of cour
message only has neaning if it is found in the nessage dictionary of the receiver. For

it is possible to have an expression such as

1+3 5

The object 1 is sent the nessage +_ which has a valence of 2; the two paranmeters are 3
Unl ess the message dictionary for an integer includes the selector + , this nessage has

meani ng.
Order of Evaluation

Besides the left-to-right rule for the order in which expressions of equal precedence ar
eval uated, there is an additional degree of freedomin the order in which the paraneters
mul tival ent nmessage are evaluated. This order is undefined in the Smalltal k-76 syntax,

are cautioned agai nst ever witing code which depends on it (i.e., which has side effect
order is of significance to conpilers and interpreters, and we wanted to reserve this de

flexibility for future inplenentors.

Examples

<time for some examples that help the reader figure out precedence, message syntax, order of evaluation--they
should be real--they should be runnable on the current system--but use message protocols ala chapter 3 until we

define syntax for them in this chapter--will the Customer and BankAccount work?>

Statements, Blocks, and Control

Evaluation in Snalltalk is sequenced by use of statementsand blocks. Any expression can serve
as a statenment. A block is a sequence of statenents separated by periods and encl osed

of square brackets. As an exanple, take

15

[v _ dict lookup: "twelve' . w _ dict |ookup: 'six’ . v+w

in which v gets 12, w gets 6, and the value of the block is the value of v+w, or 18.

If a block ends with a period (i.e., a terminating expression is onmtted), nil becones i
In these cases, the block is executed for effect rather than value. If a return statene
expression) is executed in the block, then the block terninates and its value is that of

term nating expression

Conditionals

The value of a statenent nay be treated as a true-or-false condition to choose between t

alternative paths of execution. Such a conditional statement is of the form

expression bl ock.

For exanpl e,

X <y [X]

and

rect has: pt [rect growby: 20]

If the value of the expression is not false then the block is executed and its val ue bec
val ue of the enclosingblock, whose execution thereby ternminates. Oherwi se, the block is

ski pped.

The equi val ent of the Al go

if cathen sa else if cb then sb;

i s obtained by

[ca [sa] cb [sb]]

Note that, in the above exanple, if both ca and cb are false, then the value of the bloc
nil. Syntactically, the first alternative of a conditional is a bracketed bl ock, and th

alternative is everything following that up to the end of the block in which the conditi

16

appears. It follows that a conditional must always be the |ast statenent in a block, an

of the executed alternative becones the value of that block. An exanple is

z _[x<y [x] V]

which first determines if x is less than y and if so, assigns the value x to z; otherw

y is stored in z.
The equi val ent of the Al go

v _if cathen sa else if cb then sb el se sc;
i s obtained by

v [ca [sa] cb [sb] sc]

In the above exanple, if both ca and cb are false, then the value of the bl ock, and ther

VvV, IS scC.

One of the major uses for blocks in Smalltalk-76 is as a context for a special condition

construct. An exanple is

mn _ [x <y [x] V]

If the value preceding is true, then control enters the follow ng bl ock, and when it er
block, it exits fromthe original block as well, thus allow ng construction of sinple ca

forms. The use of cascadi ng nessages nmakes the followi ng statenent form possible.

var 1 [pen paint: green]; = 2 [pen paint: blue]; =3 [pen up]; 4
[pen erase].

This is equivalent to the statenent

[var 1 [pen paint: green] var = 2 [pen paint: blue]
var = 3 [pen up] var 4 [pen erase]].

Remote Parameters

In order to use nmessage sending to acconplish control, it is necessary to provide for pa
to be passed uneval uated, so that the receiver has control of this evaluation. This fun

provi ded by keyword parts which end with an open colon () rather than a closed colon (:)

17

this case, the paraneter transnmitted is a code object, and the receiver can send the nes
value to that object in order to cause its evaluation. The code may never be eval uated,

may be evaluated many tines; it is up to the receiver

For exanple, the expression

user displayOfwWhile [fileSource _ strn.

tells the Smalltal k user interface to make the display screen black during the tinme need
eval uate the expression in brackets. The expression is a request to a fileto store a str
characters. The nmethod enpl oyed to respond to displayOfwhile first blackens the screer

then sends the nessage value to the expression, and then restores the screen information

Anot her exanple is

user tinme [dict |ookup: 'twelve']

which tells the Smalltalk user interface to return the tine that it takes to evaluate th

in brackets. The nethod for time expr is of the form

t _currentTinme. expr value. currentTine - t.

The first statement assigns to the variable t the current value of the tinme. The second
eval uates the expression in question. And the third statenent returns the difference be
new time and the old. For illustration purposes, we have assuned here that there is suc

variable, currentTine, that is being updated by another process.

If a sinple variable is passed uneval uated, the object transnitted is a renpote reference
variable and, in addition to being read with value, it may be stored into with the nmessa

value_, allowing the inplenentation of |oops with induction variables. For exanple,

hei ghts _ students transform each to each hei ght

Here the message transformto is being sent to the array students with two uneval uated

paraneters, each and each height. Wat the array will do is nmake an enpty copy of itse
and then fill that copy by successively binding each to each elenent of the original and
into the correspondi ng el enent of the copy the value of each height. Wile this may see

like an el aborate systemfunction, the entire definition in Smalltalk-76 is much smaller

18

paragraph. We will see the definition at the end of this section
Control Messages

When we designed the syntax, it seemed that there were certain control functions (the for
for instance) which could certainly be expressed nicely as keyword messages, but for who
seened to be no appropriate receiver. W decided to allow the receiver to be elided wt
convention that the nessage was essentially being sent to the interpreter itself [actualythe
context, q.v. below]. I n Smalltal k-76, three control nessages have been inplenmented in this way:
for, until and whilest at ements. W& have abused this realma little, as one woul d expect
(return a value) to be an infix operator in this way; and yet is defined as having a L

| ow precedence so that it will pick up everything to its right.

The reader will probably enjoy finding more uniform ways to do this. We have had occasion to review
these decisions, but have sat with our ad-hoc solutions because they have served so well, and because of a
few other petty details. One of these is the ad-hoc choice of several control messages which the compiler
convertsinto in-line tests and jumps, and other optimizations which are, in fact, essential to adequate
performance. The most important consideration, which we have followed, is to limit these special casesto
lie within a framework which istotally consistent with things the user can do. You can, in fact, define
your own version of afor-loop in Smalltalk, and it will runin amanner identical to that which is defined

in the system.

The For St at enent

The for statenent repeats a block of statenments once for each of an ordered set of val ues
During each repetition, the next value fromthat set is bound to an iteration vari able. The
iteration variable is specified after the keyword for. Note again that nam ng a variab
open colon not only defers evaluation, it also permts the control method to assign to t

vari abl e.

There are four forms of the for statment. They obtain the set of values for the iteratio
in different ways. One formassigns to the iteration variable the successive integers b

and a stop-val ue.
for i to: 10 do [i print].

will print the nunbers 1 through 10, in order. Notice that the actual nessage is forto:

19

with valence 3. Upon sending this nmessage, evaluation of the first and third paraneters

deferred, while the second paraneter is i medi ately eval uat ed.

Variations of this formallow a different initial value and a step val ue.

for i from 2 to: 10 do [...]
for i from 2 to: 10 by: 2 do [...]

The other formassigns to the iteration variable the successive elenents of an object th
responds to the nessage asStreamin order to obtain an object that responds to the nesag
next. As we will discuss nore precisely later, several predefined classes in Smalltalk-

able to do so, such as Stream File, HashSet, and Array.

for vaiable from tem do [statements] .

Exanpl es are

for color from rainbowector do [screen flash: color].

and

for prinme from (2 357 11) do [x\prime=0 [prine]]

in which each of the first five prinme nunbers are tested as divisors of x (the \ nessage
"modul 0"), and the first divisor which works (if any) is returned fromthe surrounding n

wi t hout further testing.

The Until Statenent

The until statenent repeats a bl ock of statenments until a condition is true. The test of

condition is nmade before ech performance of the bl ock.

until termdo bl ock.

O course, if the block executes a return statenment, it termnates not only itself, but

nmet hod.

The Wil e Statenent

The while statenment repeats a bl ock statenent until a condition is flase. The test is nac

20

each performance of the bl ock

while termdo bl ock.

Examples

<present the transform of an array example here

note: for, until, while could serve as examples by showing how the reader can program them himself>

Classes, Methods, and Subclasses
A Special Class: Obj ect

In the Smalltal k- 76 basic system the class Ohject is inplemented as the superclass of a
classes. It is an abstract class in that it has no state; its main function is to prov
foundati on nessage protocol for its subclasses. As such, it provides a default set of c

for all objects in the basic system

The nessage protocol of class Object includes the ability to respond to queries about wh
kind of class an object is or belongs to, to requests to convert an object to a Vector o
Stream (two classes provided in the basic Smalltal k-76 systen), to attenpts to inspect t
of an object or to print an object on the current output device or on a disk file. The
the class hject also provides default nethods for responding to requests of the conpile

of the process scheduler. The following is part of the nessage dictionary for class Obj

sameAs: obj ect are self and object the very sane object?

cl ass to which class do | bel ong?

is: X am | a nenber of the class x?

Is: x is the class x a superclass or class of ne?

copy return a copy of ne

print print a representation of me on the display screen

printon: strm print a representation of ne on device strm
Defining a Class

As outlined in the section entitled CapabilitiesoftheClassClass, the full representation of a

class includes a prelude which gives the name of the class and the format of its instanc

21

foll owed by a nunmber of textual nethod descriptions. Access to the prelude and selectio
given nmethod to work on are the subject of the chapter on user aids -- one sel dom conpos
full class description as linear text. The reader interested in the full textual repres

class may refer to any of the class descriptions printed in the appendices.
An exanpl e of the syntax of a class definition is

Class new title: 'BankAccount’
subcl assOf : Cust omrer
fields: "acctNunmber authorization transactions

decl are: ’'transacti onMenu’

i n which BankAccount is the name of the class, Record is its superclass, acctNunber

aut hori zation, and transactions are instance variables, and transacti onMenu is a cl ass
variable. Note that single quotes are placed around each argument except the superclass
nmessages nmust be in the order shown, but the subclassof: and decl are: nessages are

optional. The default superclass is bject.

Once a class has been defined, it nay be redefined only with caution. |If its fields (co
those of its superclass) have changed, then, in this system all old instances beconme ob:
they will fail to respond to nmessages. Furthernore, all the nethods defined for the cla
bcome undefined until they are each updated and reconpiled. Wen class redefinitionis
attenpted, the current user interface warns the user of any such inpending trauma and g

user a chance to withdraw the redefinition

If aclass is to share variables with other classes (poolvariables), an additional clause, |
by a semi -colon, is added to the class definition for each such variable. The nmessage p

be used is sharing: var.

To initialize class or pool variables, the class should include a nessage pattern classl
nmessage is sent directly to the class, although in reality it is treated specially -- an
class is created and is then sent the nmessage classlnit. Because any instance of the c

access to the class or pool variables, it can be used to initialize the variables. That
BankAccount classlnit is identical to BankAccount new classlnit. Earlier we saw

that the nessage init is treated as a special way to create an new i nstance, naking it p

22

initialize instance variables or to update class and pool variables.
Defining a M ethod

The framework which takes us fromthe |l evel of expressions to the definition of conplete

messages i s

message pattern with parameter names | temporary variable names

[code for implementing the response]

The brackets delinit a block, and within the block are statenents which are expressions
term nated by periods. An within this block indicates the return of a value and termr

of the current nethod at that point.

Defining a Method nmakes or updates an entry in the nessage dictionary of the class, asso
the procedure with the selector derived fromthe nmessage pattern. A nessage pattern | oo
exactly like the nessage except that, instead of argunents, there are the names of varia

(paraneters) to which argunents will be assigned when a nessage is actually received

If a particular argunent variable is neither a class variable nor an instance variable o
recipient, then it is automatically declared to be a tenporary (nmethod) variable. Addit

nmet hod vari abl es may be declared using the | construct.

Classes in the Basic System

The description of the objects in the systemand the creation of new objects is acconpl

the Classes in the system The Casses rely on certain other objects to acconplish this
of these objects are part of the kernel systemsince they are necessary for the function
system This section lists the O asses of objects that nmake up the part of the kernel t
Class Class. The discription of each ass includes an italicized statenent of its purp
foll owed by a description of its function followed by a description of the nmessages that
relevant to its behavior in the kernel. The two interesting relationships between d ass
and subcl ass. These relationships are indicated in the followi ng diagram wth class in
red and subclass indicated in blue. Cdass Array is included in this diagrambut not in
foll owi ng descriptions because it participates in the subclass heirarchy but not in the

behavi or of its two subcl asses.

23

oj ect
C ass
Col I ecti ond ass
Array
Vect or
String
HashSet

Di ctionary

bj ect
A primitive form for everything

hject is the ultimte superclass of all objects. It has no superclass. It defines nes
under st ood by all objects.

ot her bj ect is otherject the sane as the receiver

cl ass return the C ass object that describes the receiver (note: that
this is the deepest subclass for the receiver)

hash return an Integer (this can be any nunber, but it rust always
be the sane nunber for a particular object) (this nessage is
used in the associative behavior of Dictionaries)

Vect or
A primitive form of collection and a primitive form of association

A Vector has a set nunber of slots for objects. Each of the slots is nunbered and the o

the collection are placed in specific slots.

I ength how many objects are there roomto coll ect

i ndex _ val ue include value in the collection associated with index (which

nust be an Integer between 1 and the length of the receiver)

i ndex return the object in the collection |ast associated with index
String

A primitive form of collection and association optimized for collecting Integers between 0 and 255

24

A String behaves |ike a Vector except that the objects collected nust be nunbers between
255. Strings are used to represent descriptions of behavior called nethods. The nethod
of instructions (prinmtive nessages) for the interpretive machine. The instructions are
represented as nunbers between 0 and 255. Strings are also used for optimnized collectio

text. The text is represented as a collection of indices into a character set.

| ength how many objects are there roomto collect

i ndex _ val ue i ncl ude val ue (which nust be an Integer between 0 and 255)
in the collection associated with index (which nust be an
I nteger between 1 and the length of the receiver)

i ndex return the object in the collection |ast associated with index
HashSet

A non-duplicating, unbounded form of collection and a primitive form of inverted association

A HashSet does not have a fixed nunber of slots for the objects it collects, it will acc
many objects as are inserted. |If an object that is already in the collection is inserte
appear once. Between insertions and del etions, the HashSet will associ ate each el enent

contents with a unique Integer. These nunbers may change when an object is inserted or

del et ed.
i nsert: value i nclude value in the collection but don't duplicate it if it's
t here al ready
del ete: val ue renmove value fromthe collection (it should have been
previ ousl y inserted)
contents return a Vector containing the objects in the collection
find: val ue return a uni que I nteger associated wth value

Di ctionary

An unbounded form of collection of general associations

A Dictionary is a subclass of HashSet that will collect an arbitrary nunber of associati
pai rs of objects.

key _ val ue i nclude value in the collection associated with key (which
may be any object)

25

key return the object in the collection |last associated with key
Cl ass

A general form of object description

A C ass describes a set of objects called its instances.

new return a new i nstance of the receiver

met hodFor: selector return the method (a String) that describes an instance’s
behavi or when it receives a nessage whose selector is selector

Col | ecti onC ass

A form of description for optimized collection objects (Vector and Sring)

A Col | ectionC ass describes a set of instances that can be of different sizes.

new. |ength return a new instance of the receiver with length instance parts

met hodFor: selector return the method (a String) that describes an instance’s
behavi or when it receives a nessage whose sel ector is selector

The Implementation of the Basic Classes

This section describes how the classes listed in the | ast section are inplemented. This
description of the parts of the objects and the nmethods for responding to the nmessages.
the nmethods are what we call primtive nethods. These are prograns for the inplenentati
machi ne as opposed to regular Smalltal k nethods. They can directly interact with the vi
nmenory of the machine. Some of the methods refer to pointers to objects. A pointer to
object is a unique nunber that the virtual menory uses to refer to an object. For insta
virtual menory represents the parts of objects by associating the pointers to the parts

pointers to the object.
bj ect
A primitive formfor everything

Most objects in the systemare not direct instances of Object but rather instances of so

subcl ass of bject. The three instances of (bject itself are true, false and nil. The obj

26

cal l ed true and false are used to represent |ogical values and nil represents the default
for a part of an object. (Cbject does not contribute any instance parts so these three o
no parts at all. As a consequence, true, false and nil are identical except that they a
The only way to distinguish themis with the mnessage. Any nessages that they respond

differently to (like print) nust ultinmately send to them

ot her bj ect if the pointer of the argunent and the pointer of the receiver
are the same, returns the object true; otherw se returns false
cl ass returns a pointer to the Cass of which the receiver is an
instance. This is known to the virtual nenory
hash returns an Integer object whose value is the pointer to the
recei ver
Vect or

A primitive form of collection and a primitive form of association

Vector and String differ fromthe other Casses in the systemin that their instances do
have the same nunber of parts. The parts of the instances represent the objects in the
and different collections have different sizes. This is a storage and access efficiency
consi deration since collections could be represented as linked lists in the manner of Li
cells. Because a Vector has a fixed nunber of parts, this number nust be specified when
instance is made. This is reflected in the fact that Vector and String are instances of

Col l ectionCl ass instead of Class. Instead of the New nessage for instantiation, Coll ect

uses a nessage called new: that takes an argunment of the size of instance desired.

I ength returns the nunber of parts in the receiver which is known to
the virtual menory

i ndex _ val ue requests the virtual nenory to replace the pointer representing
t he indext part of the receiver with the pointer to the object
supplied as an argunment. Returns the argunent

i ndex returns the pointer of the i ndex part of the receiver
String
A primitive form of collection and association optimized for collecting Integers between 0 and 255

A String is a further optimzed formof Vector. Since only Integers can be instance par

virtual menory stores the values of the parts instead of pointers to the parts. This is

27

efficient since pointers are longer than the eight bits necessary to store a val ue betwe

255,
I ength returns the nunber of parts in the receiver which is known to
the virtual menory
i ndex _ val ue requests the virtual nenory to replace the value of the i ndex 1
part of the receiver with the value of the Integer supplied as a
argunment. Returns the argunent
i ndex return an I nteger whose value is the i ndex 1 part of the
receiver
HashSet

A non-duplicating, unbounded form of collection and a primitive form of inverted association

A HashSet has one instance part named objects. objects is a Vector in which the HashSet

stores the objects it collects. The HashSet deternines where to store objects in Objects

hashi ng scheme to nake duplication of objects efficient to detect.

insert: val ue if the argunent is not in objects, include it
del ete: val ue renove the argunent from objects

contents return a copy of objects with any nils renoved
find: val ue return the index of the argument in objects

Di ctionary
An unbounded form of collection of general associations

A Dictionary is a subclass of HashSet whi ch adds another instance part nanmed val ues, so
Di ctionaries have two parts named objects and values. values is a Vector of the same

|l ength as objects. Wen two objects are associated, the key is inserted in objects using
HashSet insert: nethod descri bed above. The value to be associated with the key is then

stored in values in the part with the same index.

key _ val ue include value in the collection associated with key (which
may be any object)

key return the object in the collection |ast associated with key

28

C ass
A general form of object description

A C ass describes a set of objects called its instances.

new return a new i nstance of the receiver

met hodFor: selector return the method (a String) that describes an instance’'s
behavi or when it receives a nmessage whose selector is selector

