
Inter-Office Memorandum

To Distribution Date April 16, 1979

From Roy Levin Location Palo Alto

Subject On the Harmonious Cooperation of Organization PARC/CSL
XMesa and User Microcode (version 3)

XEROX

Filed on: [Ivy]<XMesa>Doc>Microcode.bravo (and .press)

This document describes an interface that permits users to load their own microcode into the RAM
of an Alto II XM and execute it without interfering with the Mesa emulator. These facilities are
available only under XMesa. Higher-level facilities of XMesa are described in a separate document
filed on [Ivy]<XMesa>Doc>XMesa.press (and .bravo).

Loading User Microcode

The XMesa emulator occupies all of ROM1 and about 105 words of RAM. The remainder of the
RAM is available for use by client programs. To simplify loading of user microcode, a file
containing the overflow portion of the XMesa emulator is included in the user’s assembly,
producing a single output file that can be loaded in its entirety. Addressing requirements are
specified in the file; no locations are reserved "by convention" alone.

Assembly Procedure

Users should carefully follow the steps below in constructing RAM images to be loaded under
XMesa.

1) Obtain MesaXRAM.mu, MesaBLTLreal.mu, and MesabROM.mu from the dump file
[Ivy]<XMesa>System>XMesaMu.dm. The first tow files are the actual microcode, the
third contains the definitions for all registers and other symbols used by the Mesa
emulator.

2) Prepare a source file, Driver.mu, of the following form:

#AltoConsts23.mu; standard Alto definitions

; Sufficient pre-definitions must be inserted here to
; reserve locations 0-17 inclusive.

#MesaXRAM.mu; includes MesabROM internally
#MesaBLTLreal.mu; full implementation of BLTL
#UserMicrocode.mu; user microcode source

3) Assemble Driver.mu with MU, obtaining Driver.mb .

On the Harmonious Cooperation of XMesa and User Microcode 2

4) Use the PackMU subsystem to convert Driver.mb to Driver.br .

The code in MesaXRAM.mu must be assembled to begin at RAM location 20. The user must assure
this condition by including a predefinition (with no omitted labels) at the indicated place in
Driver.mu; e.g.,

%17,1777,0,L0,L1,L2,L3,L4,L5,L6,L7,L10,L11,L12,L13,L14,L15,L16,L17;

If the user microcode includes the code to control a non-standard I/O device (e.g., a Trident disk),
at least one of the labels in this predefinition will refer to an instruction used as part of the silent
boot sequence (see Alto Hardware Manual, sections 2.4, 8.4, and 9.2.2). Prudence suggests that the
locations corresponding to tasks that are not intended to execute in the RAM be filled in with
dummy instructions of the form

Li: TASK, :Li;

Thus, if Driver.mu contains no device control microcode, L0-L17 should all have this form. If
there is a space crunch, however, locations 0-17 may be used for ordinary microcode, though this is usually unnecessary.

Loading Procedure

Driver.br can now be loaded using the (Mesa) RamLoad package. The facilities of this package
are defined in RamDefs.bcd, and are exported by the module RamLoad.bcd. These files may all
be found on [Ivy]<XMesa>Utilities. RamDefs.mesa contains adequate documentation for the use
of this package; the following Mesa code illustrates a typical use.

BEGIN OPEN RamDefs;

driver: MuImage _ ReadPackedMuFile["Driver.br"];

IF LoadRamAndBoot[driver,FALSE] ~= 0 THEN SIGNAL BogusMicrocode;

ReleaseMuImage[driver];

END;

The second parameter to LoadRamAndBoot controls whether a silent boot is performed and
should be FALSE unless it is necessary to alter the set of running tasks (as is required when
additional device control microcode is initialized). LoadRamAndBoot returns the number of
mismatches between the constants specified in the microcode file and those present in the Alto’s
constants ROM. If this number is non-zero, the microcode cannot execute properly on this
machine.

Note to the nervous: Since RamLoad is a Mesa program, it must exercise caution to avoid smashing the emulator on
which it is running. As long as the procedure above is meticulously followed in constructing Driver.br, RamLoad will be
able to load the RAM without committing suicide.

Obtaining More RAM Space

The implementation of BLTL in microcode can be removed to recover approximately 26 words of
RAM space, as described below. Clients should weigh this option carefully, since BLTL is normally
used by the XMesa swapper to move blocks of words (particularly code segments) between memory
banks. The swapper can survive without BLTL, but its performance is degraded.

To eliminate BLTL from the RAM, retrieve the file MesaBLTLfake.mu from
[Ivy]<XMesa>System>XMesaMu.dm and include it in Driver.mu in the place of
MesaBLTLreal.mu. Nothing else in Driver.mu should be changed.

On the Harmonious Cooperation of XMesa and User Microcode 3

There and Back Again

This section describes mechanisms for transferring control between the Mesa emulator and user-
supplied microcode. It assumes that this microcode is, in effect, implementing "extended
instructions", and the linkage mechanisms described are suitable for this purpose. Device driver
microcode (e.g., for a Trident disk) executes in a different hardware task and therefore does not
require these linkages.

The hardware-defined linkage mechanism between control memory banks is somewhat precarious.
Opportunities for errors arise because of way the "next address" field of the microinstruction is
interpreted when SWMODE has been invoked (see section 8.4 of the Alto Hardware Manual). The
thing to remember is that whether you are in ROM1 or RAM, to get to the other memory you
must specify an address with the 400 bit on (i.e., BITAND[address,400B] = 400B). If you preserve
this invariant, your Alto will probably avoid most black holes.

The Mesa JRAM Instruction

Mesa has a bytecode, JRAM, that is a straightforward mapping of the Nova JMPRAM instruction.
JRAM takes the top element off the stack and dispatches on it, doing a SWMODE in the same
instruction. The microcode therefore looks approximately like this:

JRAM: IR_sr17, :Pop; pops stack into L, T; returns to JRAMr
JRAMr: SINK_M, BUS, SWMODE;

L_0, :zero;

Thus, at entry to whatever microcode JRAM jumps to, L=0 and T has the target address of the
jump.

Getting back to ROM1 is equally straightforward. User microcode should terminate with:

SWMODE; sigh...SWMODE and TASK are both F1s
:romnextA; (... and we can’t TASK here)

romnextA is defined in MesabROM.mu, as are all the registers and other symbols used by the
Mesa emulator.

The safest way to force a microinstruction to a specific address in the RAM is to use MU’s ’%’ pre-
definition facility. For example,

%1,1777,440,MyCode;

MyCode: . . . ; start of user-written microcode

would enable the Mesa procedure MyCode (defined just below) to transfer control to the
microcode at MyCode.

Setting Up a JRAM in Mesa

The easiest way to access microcode in the RAM is by declaring a procedure to invoke it as follows:

locationInRAM: CARDINAL = 440B;

On the Harmonious Cooperation of XMesa and User Microcode 4

MyCode: PROCEDURE[arg1: AType, arg2: AnotherType] RETURNS [result: AThirdType] =
MACHINE CODE BEGIN

Mopcodes.zLIW, locationInRAM/256, locationInRAM MOD 256;

Mopcodes.zJRAM
END;

When MyCode is invoked, the arguments are pushed on the evaluation stack, then a transfer to
location 440 in the RAM occurs. The microcode is responsible for computing result and placing it
on the stack (details appear below). The return sequence described above will then cause execution
to resume immediately after the invocation of MyCode.

Note: A few locations in the RAM are already used as entry points from the emulator microcode in ROM1. Although
no firm convention has been established, user microcode that avoids RAM addresses in the ranges 400-477 and 600-677 is
unlikely to experience compatibility problems in the future.

The Mesa Stack

The Mesa stack is implemented by 8 S-registers named stk0, stk1, ..., stk7, with stk0 being the
base of the stack. An R-register, stkp, indicates the number of words on the stack and is thus in
the range [0..8]. To obtain values from the stack in the general case, therefore, requires a dispatch
on stkp, but there is an important special case. If MyCode is invoked in a statement context (i.e.,
one in which it stands alone and is not a term of an expression), the stack will be empty except for
arg1 and arg2, which will therefore appear in stk0 and stk1, respectively. In this case stkp
will be 2 at entry, and the microcode should set it to 1 before returning to ROM1. result should
also be stored in stk0. It is frequently useful to restrict the use of MyCode to statement contexts
so that the microcode can take advantage of the known stack depth. Note: this assumes that values of
type AType, AnotherType, and AThirdType are each represented in a single word. Multi-word quantities are stored in
adjacent stack words, with consecutive memory cells being pushed in increasing address order.

An argument or return record exceeding 5 words in length requires special handling that is beyond
the scope of this document. See Roy Levin for details.

Other Emulator State

The Mesa emulator has a number of temporary registers that may be freely used by code entered
via JRAM. The following list identifies all registers used by the Mesa emulator, their intended
function, and whether they may be used as destroyable temporaries by user-supplied RAM
microcode:

Register Type Destroyable Function
by RAM code

mpc R No program counter
stkp R No stack pointer
XTSreg R No Xfer trap status
ib R No instruction byte
brkbyte R No Xfer state variable; overlaps AC3
clockreg R No high resolution clock bits

mx R Yes temporary during Xfer; overlaps AC2
saveret R Yes holds return dispatch values; overlaps AC1
newfield R Yes used by field instructions; overlaps AC0
count R Yes temporary for counting
taskhole R Yes temporary for holding things across TASKs
temp R Yes general temporary

On the Harmonious Cooperation of XMesa and User Microcode 5

temp2 R Yes general temporary

lp S No local frame pointer (+6)
gp S No global frame pointer (+4)
cp S No code segment pointer
stk0-7 S No 8 evaluation stack registers
wdc S No wakeup disable counter (interrupt control)

ATPreg S Yes alloc trap parameter
XTPreg S Yes xfer trap parameter
OTPreg S Yes other trap parameter
mask S Yes used by field instructions; smashed by BITBLT
index S Yes used by field instructions; smashed by BITBLT
alpha S Yes temporary for alpha byte; smashed by BITBLT
entry S Yes Xfer and field temporary; smashed by BITBLT
frame S Yes ALLOC/FREE temporary; smashed by BITBLT
my S Yes Xfer temporary; smashed by BITBLT
unused1 S Yes smashed by BITBLT
unused2 S Yes smashed by BITBLT
unused3 S Yes smashed by BITBLT

User microcode should endeavor to TASK within 5 microcycles of entry. It should also TASK as
close to the end as possible. Ideally, the penultimate instruction before returning to the emulator would TASK, but

unfortunately SWMODE must appear in the same instruction and both are F1s. The Mesa emulator tries to
TASK at least every 12 microcycles; user microcode should observe the same guideline.

The Mesa emulator does not check for pending interrupts on every instruction. It does so only
when it must fetch a new instruction word from memory. Therefore, user microcode that sets a
pending interrupt condition must not expect that the interrupt will be noticed by the emulator
immediately upon return to ROM1.

Distribution:
XMesa Users
Cedar Group
Mesa Group

