
Inter-Office Memorandum

To Distribution Date April 18, 1979

From Roy Levin Location Palo Alto

Subject Mesa for Extended Memory Altos Organization PARC/CSL
(version 4)

XEROX

Filed on: [Ivy]<XMesa>Doc>XMesa.bravo (and .press)

XMesa is a version of the Mesa runtime system that can exploit in certain ways the extended
memory option of the Alto II. This document describes the facilities provided by this system, its
limitations, and its compatibility with other current Mesa systems.

Overview of XMesa

XMesa uses the extended memory of an Alto II XM as additional swapping space for code. This
means that code and data need not co-exist in the primary 64K of memory. XMesa takes advantage
of any available extra space automatically; standard Alto programs do not need to be modified to
run with XMesa. XMesa does not simplify the task of managing data structures that are too large
to fit in 64K, but it does free (most of) the 64K primary address space for use by data.

Because XMesa uses extra memory for code segments, it includes a page-level storage allocator for
the additional banks. Client programs may request storage in the additional banks by using this
allocator; the interface is public. XMesa provides primitive mechanisms to read and write words in
extended memory and to copy blocks of data between banks of memory, but gives no other
assistance in accessing information in the extended memory. In particular, arbitrary use of LONG

POINTERs is not supported.

Clients should understand that, while XMesa is interface-compatible with Mesa 5.0 the implementation of certain system
components (e.g., the page-level memory allocator and segment swapper) has changed substantially. Client programs that
assume undocumented properties of these components do so at their peril. Information about incompatibilities in the
implementation appears later in this document.

Compatibility with Mesa 5.0

Considerable efforts have been made to ensure that XMesa is compatible with Mesa 5.0.
Exceptions are minor and typically affect only those programs that depend upon the format of
global frames (details appear below). To enhance the value of compatibility and because wide-
bodied Altos are not universally available, XMesa will execute properly (though with some
performance degradation) on a normal Alto (I or II) without recompilation or rebinding. Indeed,
XMesa requires no special compiler or binder. Both BCDs and image files are compatible across
machines. Thus a Mesa disk containing the XMesa versions of XMesa.image (or
BasicXMesa.image), and the debugger can be used without alteration on any Alto, XM or
otherwise. Specifically,

Mesa for Extended Memory Altos 2

1) Mesa 5.0 BCDs will load and execute under XMesa,

2) Mesa 5.0 image files will run correctly under XMesa,

3) Image files created with XMesa will run (under XMesa) on any Alto,

4) Files created with Mesa 5.0 and XMesa may be debugged (under XMesa) on any Alto.

Of course, these properties can be guaranteed only for programs that do not assume the existence of
extended memory.

Note! Compatibility is assured only for Mesa 5.0. BCDs compiled or bound by previous releases of
the Mesa system will NOT work properly under XMesa.

The Public Interface to XMesa

[Previous releases of XMesa provided their services exclusively through the XMesaDefs interface.
In Mesa 5.0, some of the facilities previously available only in XMesa have been incorporated into
standard system interfaces. To aid users of XMesa 4.1 in converting to XMesa 5.0, these facilities
are still documented here. In some cases, however, the interfaces have changed slightly.]

XMesa provides most of its services through the XMesaDefs interface. However, the facilities
supplied logically belong in other existing interfaces, notably SegmentDefs and AltoDefs. Thus,
XMesaDefs actually includes several semi-independent interfaces. Unless otherwise stated,
everything defined in this section comes from XMesaDefs.

Xmesa is being used by the Cedar project and certain definitions in the interface are intended exclusively for Cedar.
These facilities are not described in this document; clients other than Cedar should not use them.

Configuration Information

The facilities described in this section are defined in the MemoryOps interface, and therefore are
available in both standard Mesa 5.0 and XMesa.

The Mesa runtime system has an internal data structure that contains information about the
hardware configuration of the Alto on which it is running. Clients may obtain a copy of this data
structure by writing

memoryConfig: MemoryConfig _ GetMemoryConfig[];

and should normally test for the existence of extended memory by examining
memoryConfig.useXM. The extant banks of memory are indicated by memoryConfig.banks,
which is a bit mask (e.g., memoryConfig.banks=14B => banks 0 and 1 exist).

BankIndex: TYPE = [0..3];

MachineType: TYPE = {unknown0, AltoI, AltoII, AltoIIXM, D0, Dorado, AltoIV,
unknown7};

MemoryConfig: TYPE = MACHINE DEPENDENT RECORD[

reserved: [0..37B],

AltoType: MachineType,

useXM: BOOLEAN,

mdsBank: BankIndex, -- for Cedar only
secondROM: BOOLEAN,

Mesa for Extended Memory Altos 3

banks: [0..17B],

mesaMicrocodeVersion: [0..377B],

XMMicrocodeVersion: [0..377B]];

GetMemoryConfig: PROCEDURE RETURNS[MemoryConfig];

useXM is true if and only if the following conditions hold:

1) the machine is an Alto II with XM modifications (AltoType = AltoIIXM),
2) the Alto has more than one memory bank installed (banks ~= 10B),
3) the Alto has a second ROM (secondROM is true), and
4) the second ROM contains the current version of the XMesa microcode.

The microcode version fields tell only the microcode version, not the Mesa release number. (For
example, for Mesa 5.0, mesaMicrocodeVersion is 39.) XMMicrocodeVersion will be non-
zero if and only if XMesa microcode is installed in the second ROM.

The procedure IsXMesa in MemoryOps provides a convenient way for a client BCD to
determine if it has been loaded into an XMesa runtime system. The return value TRUE from
IsXMesa does not guarantee that XMesa is running on a wide-bodied Alto; the client should use
GetMemoryConfig to verify the existence of extended memory (see below).

IsXMesa: PROCEDURE RETURNS [BOOLEAN];

Unless otherwise noted, the facilities described in subsequent sections are usable only when the
following expression, henceforth called "the XM condition", is TRUE:

IsXMesa[] AND GetMemoryConfig[].useXM

Extended Memory Management

The facilities described in this section are defined in the XMesaDefs interface and should be used
only when MemoryOps.IsXMesa[] is TRUE.

Segments in extended memory are created with the usual primitives in SegmentDefs. However,
XMesa recognizes additional "default" parameter values for those procedures that expect a VM base
page number. DefaultBase0, DefaultBase1, DefaultBase2, and DefaultBase3 request
allocation in a specific memory bank. DefaultXMBase requests allocation anywhere in the
extended memory banks (banks 1-3, except for Cedar). DefaultBase (defined in SegmentDefs)
requests allocation anywhere in memory (banks 0-3) if the segment is a code segment, otherwise, it is
equivalent to DefaultBase0. DefaultMDSBase is equivalent (and preferred to)
DefaultBase0 (except for Cedar).

The following procedures logically belong in SegmentDefs. They convert between segment
handles and long pointers, and work for segments anywhere in the 18-bit address space.

XVMtoSegment: PROCEDURE [a: LONG POINTER] RETURNS [SegmentHandle];

Mesa for Extended Memory Altos 4

XSegmentAddress: PROCEDURE [seg: SegmentHandle] RETURNS [LONG POINTER];

XVMtoDataSegment: PROCEDURE [a: LONG POINTER] RETURNS [DataSegmentHandle];

XDataSegmentAddress: PROCEDURE [seg: DataSegmentHandle]

RETURNS [LONG POINTER];

XVMtoFileSegment: PROCEDURE [a: LONG POINTER] RETURNS [FileSegmentHandle];

XFileSegmentAddress: PROCEDURE [seg: FileSegmentHandle]

RETURNS [LONG POINTER];

The following definitions logically belong in AltoDefs. They define parameters of the extended
memory system.

PagesPerBank: PageCount = . . . ;
MaxXPage: PageNumber = 1777B; -- analogous to MaxVMPage

The following signal logically belongs in ImageDefs, and is raised when MakeImage (or
CheckPoint) discovers a segment in the extended memory banks that cannot be swapped out. (See
the section on restrictions, below, for more information about image files). If this signal is
RESUMEd, MakeImage assumes that the segment in question has been removed from high memory
by the client; failure to do so may result in an image file that cannot be restarted.

ImmovableSegmentInHighBank: SIGNAL [SegmentDefs.SegmentHandle];

Long Pointer Support

The facilities described in this section are defined in the XMesaDefs interface and should be used
only when the XM condition (see above) is TRUE.

XCOPY is analogous to COPY in InlineDefs, but accepts long pointers instead of pointers and
moves data across memory bank boundaries. The restrictions imposed on XCOPY in XMesa 4.1 have been

eliminated; all combinations of source and destination banks are now legitimate. XCOPY makes no attempt to
validate the long pointers; if they exceed 18 bits or reference non-existent memory, XCOPY will
have unpredictable results.

XCOPY: PROCEDURE[from: LONG POINTER, nwords: CARDINAL, to: LONG POINTER];

The implementation of XMesa prohibits client programs from manipulating the emulator bank
register directly (see section on restrictions, below). Clients wishing to perform a BitBlt across bank
boundaries must therefore use the XBitBlt procedure, which verifies that the requested extended
memory bank is available (raising XMNotAvailable if it isn’t), then loads the emulator’s alternate
bank register with bank and performs a BitBlt. Because the BitBlt microcode does not support arbitrary 18-
bit addresses, XBitBlt can only be used to move data within a single bank or between the MDS bank (bank 0) and some
other bank.

XBitBlt: PROCEDURE[bbt: BitBltDefs.BBptr, bank: MemoryOps.BankIndex];

Mesa for Extended Memory Altos 5

XMNotAvailable: ERROR;

The following procedures convert between page numbers and long pointers, and are analogous to
AddressFromPage and PageFromAddress in SegmentDefs. Illegal parameters are
detected and cause the indicated signals to be raised.

LongAddressFromPage: PROCEDURE[page: AltoDefs.PageNumber]

RETURNS[lp: LONG POINTER];

InvalidXMPage: ERROR [page: AltoDefs.PageNumber];

PageFromLongAddress: PROCEDURE[lp: LONG POINTER]

RETURNS[page: AltoDefs.PageNumber];

InvalidLongPointer: ERROR [lp: LONG POINTER];

For wizards only: the bytecodes RBL, WBL, and BLTL (defined in Mopcodes) may be used in XMesa if the XM
condition is TRUE. However, if client-supplied special microcode is used, BLTL may not be available even then. See
[Ivy]<XMesa>Doc>Microcode.press for details.

How to Obtain and Use XMesa

The files for XMesa reside on [Ivy]<XMesa>. The subdirectory structure parallels that used on
[Iris]<Mesa>, but only those files that supersede or supplement Mesa 5.0 are stored on <XMesa>.
The files on <XMesa> are organized as follows:

<XMesa>
XMesa.image, .symbols, and .signals
BasicXMesa.image,. symbols, and .signals
XMesa.cm, BasicXMesa.cm, and MakeXMDebug.cm
miscellaneous command files

<XMesa>System>
system definitions and program modules (.mesa and .bcd)
source and object code for microcode (in a .dm file)
miscellaneous command files

<XMesa>Doc>
XMesa.press and .bravo
Microcode.press and .bravo

<XMesa>XDebug>
modules to be installed in the Mesa 5.0 debugger (.mesa and .bcd)

The standard Mesa 5.0 version of RunMesa.run will run XMesa programs; no special version of
RunMesa is required.

The microcode that must be installed in the second control ROM is stored in
<XMesa>System>XMesaROM.mb. This file is in suitable form for use by the PROM blaster.

XMesa.cm and BasicXMesa.cm retrieve the corresponding image files, the debugger, and related
supporting files. MakeXMDebug.cm installs the debugger, including the modules required for
debugging the XMesa environment. (XMesa.cm and BasicXMesa.cm implicitly execute

Mesa for Extended Memory Altos 6

MakeXMDebug.cm as well.)

Note to BasicXMesa users: The standard Mesa 5.0 version of ImageMaker.bcd may be used
with XMesa programs. (XMesa 4.1 supplied its own.)

Restrictions, Limitations, and "Features"

Images and Checkpoints. MakeImage cannot preserve the contents of extended memory in the
image file it constructs. If MakeImage is invoked when the XM condition is TRUE, it will swap out
all unlocked file segements in extended memory. (It will also move any locked code segments to
primary memory.) If any segments then remain in extended memory, MakeImage will refuse to
build the image file. Analogous comments apply to CheckPoint.

Bank Registers. XMesa assumes it has exclusive control of the emulator bank register. Client
programs must not attempt to alter the bank register, but rather must use the public interfaces for
moving data to and from extended memory (see XCOPY and XBitBlt, above).

Global Frame Format. XMesa exploits the full generality of the global frame format defined in
ControlDefs. Client programs should not assume that the code segment associated with a global
frame can be obtained by writing

frame.code.handle .

The construct

FrameOps.CodeHandle[frame]

should be used instead.

Segment Object Format. The format of segment objects has changed slightly, although (for
compatibility) SegmentDefs has not been recompiled. The format assumed by XMesa appears in
XMesaOps. Clients should be unaffected by this change.

Segment Alignment. Segments may not cross bank boundaries.

Resident Code. The amount of resident code in XMesa is 4 pages greater than in Mesa 5.0. XMesa
(and BasicXMesa) also have a larger process limit (75) than the standard Mesa system, and therefore
consume an additional page of resident data. Accordingly, XMesa may exhibit slightly poorer
swapping performance on non-XM Altos than Mesa 5.0 does.

Debugger Incompatibilities. The Mesa 5.0 version of XDebug cannot be used with XMesa unless
the module XMDebug.bcd is loaded when the debugger is installed. In addition, the debugger’s
CoreMap command does not work at all under XMesa. The UserProc XCoreMap should be
installed in the debugger and used instead. The command file MakeXMDebug.cm will install the
debugger properly for use with XMesa.

Microcode in the RAM. The microcode to support XMesa occupies more than 1K of control
memory space. Most of it resides in the second 1K of control ROM (ROM1), with the excess
overflowing into the RAM. The remaining RAM space is available to users who wish to write their
own microcode, but certain conventions must be observed. Those who need to execute special
microcode from Mesa programs should consult [Ivy]<XMesa>Doc>Microcode.press (and .bravo).
Note to XMesa 4.1 clients who provide special microcode: the amount of overflow into the RAM has increased in
XMesa 5.0. If you are short of microcode space, the document previously referenced describes ways to increase the
amount of available RAM.

Mesa for Extended Memory Altos 7

Swapper Algorithms. The XMesa swapper loads a segment into extended memory by first swapping
it into primary memory, then copying it to extended memory and releasing the primary memory
space. Thus, if primary memory is so full that the requested segment cannot be swapped in,
InsufficientVM will be raised, even though sufficient space for the segment may exist in other
banks. (Analogous comments apply when swapping out segments that must be written to disk.)

Distribution:
XMesa Users
Cedar Group
Mesa Group

