
Copyright Xerox Corporation 1981

Inter-Office Memorandum

To IFS Project Date December 9, 1981

From Ed Taft Location PARC/CSL

Subject IFS Directory Operations File [Maxc1]<IFS>IFSDirOps.bravo
(version 1.35)

XEROX

This document describes the BCPL interface to the IFS directory modules. Familiarity with the IFS
file structure is assumed; see the memo ��IFS File Structure’’. The low-level file operations have
changed substantially since the previous version of IFS, particularly with regard to directory locking.

Organization

The directory package consists of the following modules:

IFSDirs.decl Parameter and structure declarations used within the directory
package and needed when calling many of its procedures.

IFSDirOpen.bcpl Procedures to open and close IFS files and create streams to
which normal Alto disk stream operations may be applied.

IFSDirDelRen.bcpl Procedures to delete and rename IFS files.

IFSDirParse.bcpl Procedures to parse IFS filenames and build File Descriptors
(FDs).

IFSDirLookup.bcpl Procedures to look up files in the IFS directory.

IFSDirUtil.bcpl Miscellaneous utility procedures needed by the other modules.

IFSDirKey.asm The �compare key routine’ and �length routine’ passed to the B-
Tree package. (These routines depend on some special IFS
microcode; the equivalent BCPL code is included as comments
in the source file.)

IFSDirAdmin.bcpl Procedures to create and destroy user Directory Information
Files (DIFs).

IFSDirCheck.bcpl A procedure to check the consistency of the directory B-Tree.

These modules call the B-Tree package and make use of other facilities provided in the IFS
environment. There is a total of about 9000 words of code (including the B-Tree package), divided
into 12 overlays of less than 1024 words each.

The directory package provides facilities at several levels. At the highest level are procedures
implementing functions analogous to those in the standard Alto directory package. For example, the
IFSOpenFile procedure translates directly from a file name to a stream in a manner similar to the
Alto OpenFile.

IFS Directory Operations 2

At lower levels, specific file operations are passed a handle called a File Descriptor (FD).
Procedures exist to translate a file name into an FD, to look up the FD in the directory, to open or
close a file given its FD, and so on. An FD may designate multiple files (due to wildcard �*’
characters appearing in the name), and a procedure exists to step the FD from one such file to the
next.

Directory and File Locks

Since the IFS is providing a multiple-access service, mutual exclusion mechanisms are required to
maintain consistency of shared data structures. These mechanisms are relatively automatic when the
directory package is accessed at its highest level. At the lower levels, however, callers must be aware
of the resources that are locked at any given time.

Two kinds of locks are implemented, file locks and directory locks. An open file is locked in one of
the following modes (defined in IFSDirs.decl):

modeRead read-only, nonexclusive
modeWrite write-only, exclusive
modeReadWrite read-write, exclusive
modeAppend append-only, exclusive
modeReadWriteShared read-write, non-exclusive

In the exclusive modes, only one client at a time may access the file; in the non-exclusive modes,
multiple clients may access the file simultaneously (but all clients must lock the file in the same
mode). A file lock is set at the time the file is opened, deleted, or renamed, and the operation will
fail if the lock cannot be set.

In addition to the locks on individual files, there is a lock controlling access to the directory itself
(recall that the entire directory is a single B-Tree). Directory access conforms to a simple �readers
and writers’ discipline whose lock modes are analogous to modeRead and modeReadWrite; but
inability to set the directory lock immediately causes the process to wait rather than resulting in
failure of the file operation. Note that the directory lock controls access only to the directory itself;
operations on files that are individually locked may proceed without regard to the directory lock.

Since the directory is shared among all users, it is essential that a process lock it for as little time as
possible. In particular, operations that can take arbitrarily long (such as deleting a file) should not
be performed while keeping the directory locked. Most directory operations (lookup and update)
are completed quickly. A process performing a potentially lengthy directory operation, such as
enumerating it, is expected to check periodically for occurrences of lock conflicts (other processes
waiting to use the directory) and to release and reacquire the lock when conflicts occur.

A Lock is a two-word structure defined in IFS.decl. Lock.count contains a positive read lock count
or �1 to denote a write lock, and Lock.ctx contains a pointer to the context that last set the lock.
All locks are manipulated by means of the Lock and Unlock procedures in IFSResUtilb.bcpl. They
are called as follows:

Lock(lock, write [false], returnOnFail [false]) = true or false

Attempts to set the specified lock (a write lock if write is true or a read lock if false
or omitted), and returns true if successful. If returnOnFail is false or omitted,
blocks until the lock can be set; if true, returns false if the lock cannot be set
immediately.

A process should not attempt to set the same lock multiple times without an
intervening Unlock. An attempt is made to detect occurrences of this error
(resulting in a call to IFSError), but the check is not foolproof.

IFS Directory Operations 3

Unlock(lock)

Unlocks the specified lock, which must have been either read- or write-locked by
the same process.

File and directory locks are ordinarily manipulated by higher-level procedures such as LockFile and
LockDirFD, described later. However, the Lock and Unlock primitives are directly useful for
controlling access to other shared objects.

Data Structures

Most IFS data structures are not operated upon directly by programs calling the directory package,
but rather are simply passed as arguments. However, an understanding of the contents and function
of the major data structures is helpful.

IFS data structures are divided into two classes, file system and runtime. The data structures actually
stored on the disk are defined in IFSFiles.decl and are documented in ��IFS File Structure’’. These
will not be further discussed here.

The runtime structure IFS (defined in IFS.decl) designates an active file system. The software is
capable of dealing with multiple, independent file systems simultaneously. All file operations are
performed relative to a particular file system denoted by an argument fs. The default is the primary
file system primaryIFS, which must be on-line when IFS is started and is the one used for swapping.
Other file systems may be mounted and dismounted while IFS is running.

The IFS structure contains configuration information (in particular, a table mapping logical unit
numbers to physical disk drives) and directory information, including pointers to the B-Tree
structure and Open File Table (OFT), the directory lock, and two other interesting items relating to
directory access.

The IFS.dirVersion word is a count of modifications to the directory: it is incremented every time
the directory is modified in any way. This is useful to programs that wish to re-validate the results
of an earlier lookup when the directory has been unlocked since that lookup. If, after locking the
directory, the program finds that dirVersion has not changed since the last lookup, then the lookup
information is still valid; otherwise, the lookup must be repeated (a relatively expensive operation).
This feature is used by the LookupFD procedure, described later.

The IFS.dirLockConflict word is set to true whenever a directory lock conflict occurs, i.e., when a
process attempts to set the lock and cannot because it is already locked in a conflicting way. A
program intending to keep the directory locked for a long time should, after locking it, set
dirLockConflict to false, then periodically poll it and, when a conflict occurs, briefly relinquish the
lock so as to give the conflicting process a chance to proceed.

The Open File Table (OFT) contains the locks for all open files. It is a hash table, keyed on the
virtual disk addresses of the open files.

The UserInfo block (defined in IFSFiles.decl) contains the identity of and information about the
user for whom file operations are being performed. The directory package uses this information in
order to check access to files and to record the creator of new files. It is the responsibility of other
parts of IFS to create the UserInfo block, check passwords, and so on.

Most procedures in the directory package assume they are running within the confines of a
Rendezvous Socket Context (RSCtx, defined in IFSRS.decl), which contains a pointer to the
appropriate UserInfo block. A special UserInfo block, pointed to by the static system, exists to
permit privileged, internal file operations that bypass access checking.

All lower-level directory operations are passed a structure called a File Descriptor (FD), defined in
IFSDirs.decl. An FD is originally created by CreateFD, which parses a file name and sets up some
auxiliary lookup information, such as the actual version number as an integer (if one was specified)

IFS Directory Operations 4

and the indices of the end of the directory name and the end of the name body. The FD carries
with it information that remains fixed for the life of the FD, such as the file system and the lookup
control parameter. As operations are performed on the FD, various parts of it are updated.

High-Level Operations

The following operations are similar to ones available in the Alto Operating System.

IFSOpenFile(name, lvErrorCode [], mode [modeRead], itemSize [charItem], lc [see below], fs
[primaryIFS], dirName [connected]) = stream or 0

Opens an IFS file, translating directly from a name to a stream. If successful,
returns an open stream upon which the standard Alto disk stream operations may
be performed. If unsuccessful, stores an error code in @lvErrorCode and returns
zero.

The name must be a BCPL string whose complete form is �<dir>name!ver’, but in
which the directory and version may be omitted (in which case they will be
defaulted). The default directory is the BCPL string dirName, if supplied, or the
connected directory obtained from the running context’s UserInfo block otherwise.
The default version is given as part of lc (see below). The version may also be one
of �!H’, �!L’, or �!N’ designating highest existing version, lowest existing version, or
next higher version. If the lookup control permits it, wildcard �*’s may appear
anywhere in the name to designate multiple files (discussed in more detail later).

The mode should be one of modeRead, modeWrite, modeReadWrite, or
modeAppend (modeReadWriteShared is illegal). The first three modes are
equivalent to the corresponding ksTypes in the Alto operating system, while
modeAppend is equivalent to modeWrite except that the stream is initially
positioned to end of file. (IFSOpenFile correctly checks the write or append
protection of a file when it is opened; however, it is the caller’s responsibility to
prohibit overwriting existing parts of a file opened in modeAppend.)

The itemSize is one of charItem or wordItem, as in the Alto operating system.

The lookup control (lc) parameter contains several bits and fields controlling certain
aspects of the directory lookup process. If the lcCreate bit is set, then IFSOpenFile
may create a new file (protections permitting); otherwise, if the designated file does
not exist an error will result. If the lcMultiple bit is set, the name is permitted to
designate multiple files by means of �*’; otherwise, occurrence of �*’ in the name
will cause an error. The remainder of the lookup control word is a default version
control specification, to be used in the absence of an explicit version number in the
name. This may be one of:

lcVHighest highest existing version
lcVNext next higher version (highest+1)
lcVLowest lowest existing version
lcVAll all versions (same as �!*’)

The default lookup control specification depends on the mode in which the file is
being opened, as follows:

modeRead lcVHighest
modeWrite lcCreate+lcVNext
modeReadWrite lcCreate+lcVHighest
modeAppend lcCreate+lcVHighest

If the name contains �*’s (which are accepted only if the lookup control includes
lcMultiple), then the first file whose name matches the pattern is opened. It is

IFS Directory Operations 5

expected that the caller will retain the FD and step it through all the other files
matching the pattern, using the NextFD and OpenIFSStream primitives described
later.

Closes(stream)

Performs the normal actions of cleaning up and destroying the stream, and also
closes (i.e., unlocks) the file and destroys the FD.

IFSDeleteFile(name, lvErrorCode [], lc [lcVLowest], fs [primaryIFS], dirName [connected],
deleteUndeletable [false]) = true or false

Deletes the specified file, returning true if successful and false if unsuccessful. The
parameters are interpreted as for IFSOpenFile. The name may not designate
multiple files. The user must have write access to the file.

A file may have an undeletable attribute that prevents it from being deleted even if
all other conditions are satisfied; if deleteUndeletable is true, the undeletable
attribute is ignored.

IFSDeleteOldVersions(name, lvErrorCode [], fs [primaryIFS], dirName [connected],
deleteUndeletable [false]) = true or false

Deletes all but the highest-numbered version of all files designated by name, which
may include �*’s but must not have an explicit version number. Returns true
normally and false if no file by that name exists or any of the delete operations
fails; an error code for the last such failure is stored in @lvErrorCode.
deleteUndeletable is interpreted as for IFSDeleteFile.

IFSRenameFile(oldName, newName, lvErrorCode [], lc [lcVHighest], fs [primaryIFS],
oldDirName [ctxRunning.connName], newDirName [ctxRunning.connName]) =
true or false

Renames the file oldName to be newName, returning true if successful and false if
unsuccessful. The old file must exist and the new file must not exist. The lc
parameter applies to oldName; the lookup control used for newName is
lcCreate+lcVNext. The user must have write access to the old file and create
access to the user directory in which the renamed file will reside.

Lower-Level Directory Operations

CreateFD(name, lc, lvErrorCode [], fs [primaryIFS], dirName [connected]) = fd or 0

Parses name and constructs an FD, returning the FD if successful and zero if
unsuccessful. The only possible errors are syntax errors in the name; this procedure
makes no references to the directory.

CreateFD sets the fs, lc, lenDirString, lenSubDirString, lenBodyString, and version
fields in the FD structure. A skeleton Directory Record (DR, defined in
IFSFiles.decl) is constructed and saved in the dr pointer; this record is of
drTypeNormal and contains a copy of the name string, with an appropriate version
number appended if appropriate (0 for lcVLowest and 65535 for lcVHighest or
lcVNext).

If the lookup control includes lcMultiple and the name contains �*’s (or the version
control is lcVAll and no version is specified in the name), a template is constructed
and stored in the template field in the FD for later pattern matches, the index of the
first �*’ is stored in the iFirstStar field, and the name in the DR is truncated at that
point for use as a starting key by NextFD.

IFS Directory Operations 6

All remaining fields in the FD are zeroed. In particular, the lookupStatus field is
set to lsNoLookup, indicating that this FD has not yet been looked up in the
directory.

DestroyFD(fd) = 0

Destroys the FD (and the DR and template pointed to by it, if any). Zero is
returned so as to permit use in contexts such as:

fd = DestroyFD(fd)

LookupFD(fd, dirLockMode [lockNone]) = 0 or error code

Looks up the file described by fd, applying the lookup control parameters (already
stored in the FD) as appropriate. If the file already exists, replaces the DR pointed
to by the FD with a copy of the actual entry that was found (including its type,
length, and FP). If the file does not exist but lcCreate is set in the lookup control,
generates a complete DR (except for the FP) which may be used when creating the
file.

Returns zero if successful and an error code if unsuccessful. Failure to find the file
in the directory is considered an error only if lcCreate is not set or directory �<dir>’
does not exist.

In the successful case, the lookupStatus field in the FD is set to one of the
following:

lsNonexistent The file does not exist, and no other version of that
file exists either. In order to create the file, one
must use directory-default file properties.

lsOtherVersion The file doesn’t exist, but another version of the file
does exist. The FP of that file is stored in the DR
to permit one to read its leader page and obtain is
properties. (This facilitates the inheriting of
properties from one version to the next.)

lsExists The file exists, and a copy of its actual directory
entry record is stored in the DR.

If the FD designates multiple files and this is the first time LookupFD has been
called, LookupFD calls NextFD to find the first directory entry matching the
pattern in the FD’s template. If no such file is found, an error is returned.

LookupFD normally assumes that the directory is not locked at the time of the call,
and leaves it unlocked upon return. This behavior is controlled by the value of
dirLockMode:

lockNone unlocked at call, unlocked upon return
lockRead unlocked at call, read-locked upon return
lockWrite unlocked at call, write-locked upon return
lockAlready locked at call, locked the same way upon return

The directory locking actions are the same whether LookupFD succeeds or fails.

If the directory is locked upon return from LookupFD, then for as long as the
directory remains locked the FD (in particular, the lookupStatus) is valid, i.e., it
accurately reflects the state of the directory. Hence one may immediately perform
operations that depend on the validity of the FD, such as modifying the directory
entry.

IFS Directory Operations 7

However, once the directory has become unlocked, the FD is no longer valid, since
some other process could change the directory in the meantime. In this case, before
making use of the information in the FD one must revalidate it by calling
LookupFD again, and one must be prepared for the possibility that its lookupStatus
may change or even that the new call will fail despite the previous call having
succeeded. (The revalidation operation is very cheap if the directory has not
actually changed since the last LookupFD on the same FD.)

Most operations that take an FD as an argument expect the directory to be
unlocked at the time of the call and perform the revalidation operation internally;
the only important exception is TransferLeaderPage.

LookupIFSFile(name, lc, lvErrorCode [], fs [primaryIFS], dirName [connected]) = fd or 0

Combines the actions of CreateFD and LookupFD, returning an FD if successful
and zero if unsuccessful. The directory should be unlocked at the time of the call
and is unlocked upon return.

NextFD(fd, dirLockMode [lockNone]) = true or false

If fd designates multiple files, finds the next file matching the pattern and replaces
fd’s DR with its directory record. If such a file is found, sets the lookupStatus to
lsExists and returns true. If no such file is found, or fd does not designate multiple
files, returns false. The dirLockMode argument is treated as in LookupFD.

LockDirFD(fd, write [false])

Locks the directory referenced by fd. Sets a write lock if write is true and a read
lock otherwise. If a lock conflict occurs, sets the IFS.dirLockConflict flag and waits
until the directory becomes unlocked.

UnlockDirFD(fd)

Unlocks the directory referenced by fd.

ModifyDirFD(fd)

Declares the directory referenced by fd to have been modified, by incrementing its
version number. This should be done whenever the directory is modified (i.e., an
entry is created, deleted, or updated). The directory must be write-locked at the
time of the call and remains write-locked upon return.

Lower-Level File Operations

OpenIFSFile(fd, mode) = 0 or error code

Opens the file designated by fd, returning zero if successful and an error code if
unsuccessful. The directory should be unlocked at the time of the call and is
unlocked upon return.

OpenIFSFile checks protections and allocations as appropriate, creates the file if
necessary, and attempts to lock the file in the specified mode. If any of these
operations fails, an appropriate error code is returned and the file is not locked.

Note: if mode=modeReadWriteShared, it is the caller’s responsibility to maintain
consistency among multiple clients accessing the file.

IFS Directory Operations 8

CreateIFSStream(fd, itemSize) = stream or 0

Creates and returns a stream for an open file designated by fd. Returns zero if
unsuccessful (the only likely cause of failure is a disk error in the leader page). fd is
saved in ST.par1, which must not be clobbered by anyone (par2 and par3 are ok to
use, however). Positions the stream to end of file if the file was opened with
modeAppend.

OpenIFSStream(fd, lvErrorCode [], mode [modeRead], itemSize [charItem]) = stream or 0

Combines the actions of OpenIFSFile and CreateIFSStream, returning the stream if
successful and zero if unsuccessful. If any operation fails, an error code is stored in
@lvErrorCode and the file is not locked. A mode of modeReadWriteShared is
illegal.

StreamsFD(stream) = fd

Returns the FD designating the file associated with the open stream.

GetBufferForFD(fd) = buffer

Allocates (from sysZone) and returns a buffer capable of holding one page of the
file designated by fd. It is the caller’s responsibility to free this buffer.

CloseIFSFile(fd, dPages [0])

Closes (i.e., unlocks) the open file designated by fd, but does not destroy the FD. If
dPages is supplied and nonzero, then the disk page utilization in the user’s
Directory Information File (DIF) is updated by the amount dPages, which may be
positive or negative. dPages should be the amount by which the file’s size changed
while it was open.

The directory should not be locked at the time of the call and is not locked when
CloseIFSFile returns.

CloseIFSStream(stream) = fd

Closes an open file given its associated stream handle, and destroys the stream, but
does not destroy the FD. This procedure calls CloseIFSFile internally and takes
care of the dPages computation. The FD is returned for convenience in
enumerating multiple files. The Closes stream operation is identical to
CloseIFSStream except that it also destroys the FD.

DeleteFileFromFD(fd, deleteUndeletable [false], fileLocked [false]) = 0 or error code

Deletes the file designated by fd, returning zero if successful and an error code if
unsuccessful. This procedure deletes both the directory entry and the file itself. It
differs from IFSDeleteFile in that it accepts an FD rather than a name and does not
destroy the FD, so it is useful when deleting multiple files.

A file may have an undeletable attribute that prevents it from being deleted even if
all other conditions are satisfied; if deleteUndeletable is true, the undeletable
attribute is ignored.

DeleteFileFromFD assumes that the directory is unlocked at the time of the call
and leaves it unlocked upon return. Ordinarily it assumes that the file is not
locked; that is, if the file is currently open, DeleteFileFromFD will fail with
ecFileBusy. However, if fileLocked is true, the caller asserts that the file is write-
locked at the time of the call; DeleteFileFromFD unlocks the file while deleting it.
(In this case, if the delete operation fails for some other reason, the file remains

IFS Directory Operations 9

locked upon return.)

RenameFileFromFD(fd, newName, newDirName [CtxRunning.connName]) = 0 or error
code

Renames the file designated by fd to be newName, whose default directory is
newDirName. This is similar to IFSRenameFile except that the old file is specified
by an FD rather than by a string. When the rename is completed, fd still designates
the file under its old name; this enables one to rename multiple files matching a
single fd.

ChangeFileAttributes(fd, proc, arg) = 0 or error code

Facilitates changing leader page attributes (e.g., protections) of the file designated by
fd. This procedure checks access, locks the directory, and calls proc(fd, buffer, arg),
where buffer is a pointer to a buffer containing a copy of the file’s leader page and
arg is the arg passed to ChangeFileAttributes. If proc returns true, the leader page
is rewritten.

The caller must either be the owner of the file (in the sense of UserOwns, below) or
have write access to it. The directory must be unlocked at the time of the call and
is unlocked upon return.

TransferLeaderPage(fd, buffer, write [false])

Transfers the leader page of the file designated by fd to or from the supplied page-
size buffer. The page is written if write is true and read otherwise. The file need
not be open, but if it isn’t the directory must be locked and the FD must have been
validated by LookupFD or NextFD.

LockTransferLeaderPage(fd, buffer, write [false]) = 0 or error code

Locks the directory, performs the same action as TransferLeaderPage, and unlocks
the directory. This procedure calls LookupFD internally to revalidate fd; if that
fails, an error code is returned.

UserOwns(fd, userInfo [CtxRunning.userInfo]) = true or false

Returns true if the user described by userInfo is the owner of the file described by
fd. This determination is made strictly syntactically: if the user’s login or connected
directory name is the same as the directory name of the file then UserOwns returns
true. No reference is made to the directory, and the file need not actually exist.

CheckAccess(prot, owner, userInfo [CtxRunning.userInfo]) = true or false

Returns true if the user described by userInfo has access to the object protected by
prot, which is a Protection structure (defined in IFSFiles.decl). owner should be
true if the user owns the object in question and false otherwise (e.g., for a file, the
value of owner should be UserOwns(fd, userInfo)).

If the system is configured to use Grapevine for access control, CheckAccess will
consult Grapevine when necessary and will update userInfo and the user’s DIF to
reflect any newly-discovered group memberships.

Directory Administration Operations

ReadDIF(name, fs [primaryIFS], lvErrorCode []) = dif or 0

Reads the Directory Information File (DIF) for the supplied directory name, and

IFS Directory Operations 10

returns a DIF structure (see IFSFiles.decl) which the caller must free when done
with it. The initial DIFRec portion of the DIF is copied from the cached
information in the DIF’s directory entry rather than from the file itself so as to
obtain the up-to-date value for the disk page usage. The caller must have read
access to the DIF (which is ordinarily protected against all users except the owner).

WriteDIF(name, dif, fs [primaryIFS]) = 0 or error code

Creates or updates the DIF for the supplied directory name. dif must point to a
completely filled-in DIF structure. This operation includes updating the
information cached in the DIF’s directory entry from the initial DIFRec portion of
the DIF. The caller must have �wheel’ capability.

CreateUser(name, password, diskLimit [1000], owner [0], capabilities [0], worldRead [false], fs
[primaryIFS]) = 0 or error code

Creates a new user directory (i.e., a DIF) with the parameters supplied and the
remaining parameters set to default values. Returns zero if successful and an error
code if unsuccessful. If owner is nonzero, a files-only directory is created and owner
is taken to be a BCPL string specifying the directory’s owner. The default file
protection is set to give read access to the world if worldRead is true. The caller
must have �wheel’ capability.

This procedure is useful primarily during file system creation for establishing the
essential built-in directories (e.g., <System>). It provides means for setting only a
subset of all possible directory parameters.

DestroyUser(name, fs [primaryIFS]) = 0 or error code

Destroys the named user directory, returning zero if successful and an error code if
unsuccessful. All files whose names begin with �<name>’ are destroyed, including
the DIF. Since the files are deleted using normal access methods, the caller should
be prepared to retry the call after errors such as ecFileBusy. The caller must have
�wheel’ capability.

WheelCall(proc, args ...) = result

Enables the current process’s �wheel’ capability and then calls proc with the
remainder of the argument list as its arguments; then restores the process’s original
capabilities and returns the result returned by proc. This has the effect of bypassing
all access checks for operations performed during the call to proc; it is the caller’s
responsibility to determine whether this is reasonable.

