ALTO: A Personal Computer System
Hardware Manual

May, 1979

Abstract

Thismanual isarevision of the original description of the Alto: "Alto, A Personal Computer
System.” It includes a complete description of the Alto | and Alto |1 hardware and of the standard
microcode (1:24, 11:3).

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Xerox Corporation ¢ 1978, 1979
All rights reserved.

Alto Hardware M anual

Table of Contents
Introduction

Micr opr ocessor
Arithmetic section
Constant Memory
Main Memory
Microprocessor control

Emulator

Standard Instruction Set
Interrupts
Bootstrapping
Hardware

Display Controller
Programming Characteristics
Hardware

Display Controller Microcode
Cursor

Miscellaneous Peripherals
Keyboard

Mouse

Keyset

Diablo Printer

Parity Error Detection

Disk and Controller
Disk Controller Implementation

Ethernet

Programming Characteristics
Ethernet Hardware

Ethernet Microcode

Control RAM, ROM, and s Registers
RAM-Related Tasks

Processor Bus and ALU Interface
Microinstruction Bus Interface
Microinstruction Memory Banks
Standard Emulator Access
Interpretation of Emulator Traps

M and S Registers

Restrictions and Caveats

Nuts and Boltsfor the Microcoder
Standard Microcode Conventions
Microcode Techniques Which Need Not Be Rediscovered

Microinstruction Summary

Standard Reserved Memory L ocations
Standard Reserved SIO (STARTF) Bits
Standard Tasks

S-Group Instruction Summary
AltoI/Alto Il Differences

Summary of Known Features/Bugsin Released Microcode Versions

1.0 INTRODUCTION

This document is a description of the Alto, asmall personal computing system originally designed at
PARC. By "personal computer” we mean a non-shared system containing sufficient processing power,
storage, and input-output capability to satisfy the computational needs of asingle user.

A basic Alto systemiis:

* An 875-line television monitor, with aviewing area of about 8| " x 11", oriented with the long
tube dimension vertical. The controller provides a 606 by 808 point display which is refreshed
from main memory at 60 fields (30 frames) per second. It has programmable polarity, alow
resolution mode which conserves memory space, and a 16 by 16 cursor whose position and
content are under program control.

* An unencoded 64-key keyboard.
* A mouse (pointing device) and five-finger keyset.
* Uptotwo Diablo Model 31 disk drives or aModel 44 disk drive.

* Aninterface to the Ethernet, a3 Mbpslocal network that can connect up to 256 Altos and other
computers separated by as much asamile. Most Ethernets are interconnected by gateways and
leased lines to form a nationwide internet.

* A microprogrammed processor which controls the disk, display and Ethernet, and emulates an
instruction set. The standard instruction set for which emulation microcodeis supplied in the
microinstruction ROM is described in section 3.0.

* 64K 16 bit words of 850ns error corrected semiconductor memory, expandable to 256K .

* 1K microinstruction RAM that can be read and written with special microcode to extend the
standard instruction set or to emulate a different instruction set or to drive special 1/0 devices.

* The processor, disk, and their power supplies are packaged in asmall cabinet. The other 1/0
devices may be afew feet away, and are pleasingly packaged for desk top use.

Some options:

* Anexpanded microinstruction memory consisting of either 2k of PROM or 3k of RAM.

* A Diablo HyType printer.

* A Versatec Printer/Plotter.

* A controller for CalComp Trident disk drives.

* A controller for MDs and Kennedy tape drives.

* An Orbit, the controller for avast array of laser-scanned printers.

* Communications controllers for BBN-1822, sbLc, BiSync and Async.
The remaining sections of this document will discuss the hardware and microcode of the standard
configuration Alto. At present, two slightly different versions of the Alto exist: the Alto | and the Alto

I1. Most passages of this document pertain to both machines; those that apply to one only are clearly
marked.

This document does not deal with the numerous non-standard peripheral devices that have been
interfaced to the Alto. Non-standard interfaces and their designers are tabulated in an appendix.

Alto Hardware M anual Section 1: Introduction

1.1 Guide to this Document

This document is a comprehensive description of the Alto. Information about hardware, microcode, and
CPU programming is sprinkled throughout. Programmers interested primarily in the cru emulator should
concentrate on the sections labeled with an asterisk in the table of contents.

1.2 People

The Alto was originally designed by Charles P. Thacker and Edward M. McCreight and was based on
requirements and ideas contributed by Alan Kay, Butler Lampson and other members of PARC'S
Computer Sciences Laboratory and Systems Sciences Laboratory. Bob Metcalfe and David Boggs
designed the Ethernet; Severo Ornstein and Bob Sproull designed the Orbit; Roger Bates designed the
Trident controller; David Boggs designed the tape controller; Tat Lam, Dick Lyon, Ed McCreight and
Dan Swinehart designed the Audio Board; Larry Stewart designed the BBN-1822 interface.

The machine was re-engineered as the Alto || for ITG/SDD to a specification developed by John Ellenby.
The engineering and production were carried out by EOD Special Programs Group, managed by Doug
Stewart and coordinated on behalf of PARC and SDD by John Ellenby. The members of EOD/SPG who
worked on the project are Doug Stewart, Ron Cude, Ron Freeman, Jim Leung, Tom Logan, Bob
Nishimura, Abbey Silverstone, Nathan Tobol, and Ed Wakida.

This hardware manual has had along history of modification and extension and has benefited from
endless toil by numerousindividuals. The original manual was written by Chuck Thacker and Ed
McCreight. The last major revision was edited by Bob Sproull and Diana Merry. The present document
isthe responsibility of Ed McCreight, David Boggs, and Ed Taft.

1.3 Conventions and Notation
Numbers in this document are decimal unless followed by "B"; thus 10 = 128.

Bitsin registers are numbered from the most significant bit (0) toward the least significant bit. Fields
within registers are given by following the register name with a pair of numbersin brackets: IR[a-b]
describes the b-at+1 bit field of the IR register beginning with bit a and ending with bit b inclusive. IR[d]
is short for IR[a-a].

The symbol " " isused to mean "isreplaced by." ThusIR[4-5] _ 2 means that the 2-bit field of IR
including bits 4 and 5 is replaced by the bit values 1 and 0 respectively. The symbol "=" isused asan
equality test.

Memory is by convention divided into 256-word "pages.” Page n thus contains addresses 256* n to
256*n+255 inclusive. The notation "rv(adr)" isused, asin BCPL, to denote "the contents of the memory
location with address adr.”

Alto Hardware Manual Section 2: Microprocessor

2.0 MICROPROCESSOR

This section describes the Alto microprocessor structure. 1f your programming needs on the Alto do not
extend to writing new microcode, this section is best |eft untackled. 1f you do need to decipher what
follows, it may be helpful to have alisting of the "standard” Alto microcode at your side.

The microprocessor is shown schematically in Figures 1 and 2. A principal design goa in this system
was to achieve the simplest structure adequate for the required tasks. Asaresult, the central portion of

the processor contains very little application-specific logic, and no specialized data paths. The entire
system is synchronous, with aclock interval of approximately 170 nsec. All microinstructions require one
cyclefor their execution.

A second design goal was to minimize the amount of hardware in the 1/0 controllers. Thisisachieved
by doing most of the processing associated with 1/0 transfers with microprograms. To alow devicesto
proceed in parallel with each other and with cpu activity, a control structure was devised which allows
the microprocessor to be shared among up to 16 fixed priority tasks. Switching among tasks requires
very little overhead, and occurs typically every few microseconds.

2.1 Arithmetic Section

The arithmetic section of the processor consists of two 32-word by 16-bit register filesr and s, and five
registers, T, L, M, MAR, and IR. The registers are connected to the memory and to an ALU with a 16-bit
parallel bus. For historical reasons, the s and M registers are viewed as part of the microinstruction RAM
and are described in section 8.

The ALU isasN74181 type, restricted so that it can do only 16 arithmetic and logical functions. The ALU
output feeds the L, M, and MAR registers. T may also be loaded from the ALU output under certain
conditions. L isconnected to a shifter capable of left and right shifts by one place, and cycles of 8. It
has a mode in which it does the peculiar 17-hit shifts of the standard instruction set, and a mode which
allows double-length shifts to be done.

The IR register is used by the emulator to hold the current emulated instruction -- see section 3.5.
Attached to the busis a 256-word read only memory (RoM) which holds arbitrary 16-bit constants.

The fields of the 32-bit microinstruction are:

FIELD NAME MEANING
0-4 RSELECT R Register Select

5-8 ALUF ALU Function

9-11 BS Bus Data Source

12-15 F1 Function 1

16-19 F2 Function 2

20 T Load T

21 L LoadL & M

22-31 NEXT Next microinstruction address (subject to modifiers)

When microprogramming the Alto, it isimportant to understand where the machinge’ s state resides and
how it changes. At the beginning of amicroinstruction cycle, the various registers (principaly T, L, M,
and IR, but also various bits of state such as ALUCO) contain values that remain unchanged throughout
execution of the microinstruction. During this time, the various non-state-retaining data paths and
elements, such as the bus, ALU, and shifter, compute results based entirely on the initial values of these

SBANK =—F———

RSEL +— Monitor Transceiver
| Drive |
| I |
Display ! Ethernet
r r Control | Control
R S l
RSEL[0-2] — I
~ ~
RSEL[3-4] — 5
13-4 q £ 33x16 <> 16 RSEL +— stant :] ;
o 3 TN
IR[3-4] —;X :> ? BS + 2s6x16 ontro
Processor . ‘
Bus
r |_r r 16
1 1 P X r '
1 Dri\!:ers
w ===
LOAD T A'r ”F Parity :
7 .
i J
|| Memory = = Mouse
P u
6 r F Data Bus = = Keyboard
R N
ALUF[0-3] or . ALU 32 k |- - Keyset
+7
n ALU Bus V r
Main
LOAD L AV r |\r 'V'FR Memory
N
7 |
> . -z '\A";(’jnory 16 4X64KX16+7
hi Busress Error Corrected
S Irer > Dynamic MOS
De(fde
Control ‘
Figure 1 -- Processor Data Paths
RSEL ALUF | BS | F1 F2 | T | L | NEXT

Alto Hardware Manual Section 2: Microprocessor

registers. However, the registers themselves do not change.

At the end of the cycle, if the microinstruction specifies that one or more registers be loaded, they are
loaded instantaneously and simultaneously with the newly-computed values. These then serve asthe
initial register values for the next microinstruction. Asaresult, it ispossible (and in fact very common)
to both read and load a register during the same microinstruction. The R registers behave similarly
except that it is not possible to both read and load an R register during the same microinstruction.

R SELECT

The R select field specifies one of the 32 R cells to be loaded or read under control of the bus source
field, or, in conjunction with the bus source field, one of the 256 locations to be read from the constant
ROM. TheR field isalso used to addressregistersin s -- see section 8.

The low order two bits of the R address (but not the constant RoM address) may be taken from fieldsin
IR under control of the functions. This allows the emulator to address its central registers easily.

ALU FUNCTIONS

The ALUF field controls the sSN74181 ALU. Thisdevice can do atotal of 48 arithmetic and logical
operations, most of which arerelatively useless. The 4-bit field is mapped by a PROM into the 16 most
useful functions.

ALUF T FUNCTION 3 2 S1 SO M C OPERATION

0 * BUS 1 1 1 1 1 0 A

1 T 1 0 1 0 1 0 B

2 * BUSORT 1 1 1 0 1 0 A+B

3 BUSAND T 1 0 1 1 1 0 AB

4 BUSXORT 0 1 1 0 1 0 A XORB

5 * BUS+1 0 0 0 0 0 0 APLUS1

6 * BUS-1 1 1 1 1 0 1 A MINUS 1

7 BUS+T 1 0 0 1 0 1 A PLUSB

10B BUS-T 0 1 1 0 0 0 A MINUSB

11B BUS-T-1 0 1 1 0 0 1 A MINUSB MINUS 1
12B * BUS+T+1 1 0 0 1 0 0 A PLUSBPLUS1
13B * BUS+ SKIP 0 0 0 0 0 SKIP APLUS1

14B * BUS.T (AND) 1 0 1 1 1 0 AB

15B BUSAND NOT T 0 1 1 1 1 0 A & NOT B
16B-17B UNDEFINED

If T isloaded in an instruction containing an ALUF with a* in the T column, it will be loaded from the
ALU output rather than from BusS.

$3-90 selects the function; M selects logical or arithmetic mode by controlling carry propagation; C isthe

carry into the LsB. The carry output isforced to zero during logical operations (M=0). BusistheA
input to the ALU; T isthe B input.

BUS SOURCES

The bus data source (BS) field specifies one of 8 data sources for the bus:

BS NAME SOURCE
0 _RName Read R

1 RName_ Load R from shifter output (see below)

2 (None) Enables no source to the BUS, leaving it all ones
3 Task-specific Performs different functionsin different tasks.

Alto Hardware Manual Section 2: Microprocessor

4 Task-specific Performs different functionsin different tasks.

5 _MD Memory data

6 _MOUSE BUS[12-15]_ MOUSE; BUS[0-13]_-1

7 _DISP IR[8-15], possibly sign extended (see section 3.5)

RName_isnot logically a source, but because it is gated to the bus during both reading and writing, itis
included in the source specifiers. Loading R forces the Bus to 0 so that an ALU function of 0 and T may
be executed simultaneoudly.

The bus has the property that if more than one source is gated to it during a single microinstruction, it
computes the AND of the source values. Thisistrue regardless of the means by which the sources are
enabled (BS, F1, or F2).

This bus source decoding is not performed if F1=7 or F2=7. These functions use the Bs field to provide
part of the address to the constant ROM.

SPECIAL FUNCTIONS

The two function fields specify the address modifiers, register load signals (other than thosefor R, S, L, M
and T), and other specia conditions required in the processor. The first eight conditions specified by
each field (except BLOCK) are interpreted identically by all tasks, but the interpretation of the second
eight depends on the active task. The task-independent functions are given below; the task-specific
functions are included with the task descriptions.

FUNCTION 1:

F1 NAME MEANING

0 --- No Activity

1 MAR_ Load MAR from ALU output; start main memory reference (see section
2.3).

2 TASK Switch tasks if higher priority wakeup is pending (see section 2.4).

3 BLOCK Disable the current task until re-enabled by a hardware-generated
condition. Note: thisfunction is reserved by convention only; it is not
done by the microprocessor.

4 LLSH1 SHIFTER OUTPUT will be L shifted left one place*

5 _LRSH1 SHIFTER OUTPUT will be L shifted right one place*

6 _LLcys SHIFTER OUTPUT will be L rotated left 8 places*

7 _CONSTANT Put on the bus the constant from the constant RoM location addressed by
RSELECT.BS

*Modified by DNs (Do Novel shifts) function, and MAGIC function. LLSH1and L RSH 1
ordinarily shift a zero into the vacated bit position.

FUNCTION 2:
F2 NAME MEANING
0 --- No Activity
1 BUS=0 NEXT_NEXT OR (if (BUS=0) then 1 else 0).
2 SH<0 NEXT_NEXT OR (if (SHIFTER OUTPUT<0) then 1 else 0).*
3 SH=0 NEXT_NEXT OR (if (SHIFTER oUTPUT=0) then 1 else 0).*
4 BUS NEXT_NEXT OR BUS[6-15]

Alto Hardware Manual Section 2: Microprocessor

5 ALUCY NEXT_NEXT OR ALUCO. ALUCO isthe carry produced by the ALU during
the most recent microinstruction that loaded L. It isnot the carry
produced during execution of the microinstruction that contains the
ALUCY function.

6 MD_ Deliver BUS data to memory (see section 2.3)
7 CONSTANT Same asF1=7

*Note that the value of the SHIFTER OUTPUT is determined by the value of L asthe
microinstruction begins execution and the shifter function (L LSH 1, L RSH 1, Or L LCY 8)

specified during the current microinstruction (if no shifter function is specified, the shifter output
isequal to L).

2.2 Constant Memory

The constant memory isa 256 x 16 PROM that holds arbitrary constants. The constant memory is gated
to the bus by F1=7, F2=7, or BS>4. The constant memory is addressed by the (8 bit) concatenation of
RSELECT and BS. The intent in enabling constants with BS>4 is to provide a masking facility, particularly
for the _MousE and _DIsP bus sources. Thisworks because the processor bus ANDs if more than one
sourceisgated to it. Up to 32 such mask constants can be provided for each of the four bus sources

>4,

Alto I: Note that it is not possible to use a constant other than -1 with the _MD bus source, because
memory parity is calculated on the bus, and a parity error will result if bits are masked off in aword
fetched from memory.

2.3 Main Memory

Main memory references are handled differently on Alto | and Alto Il. It is, however, possible to write
most microcode so that it will operate correctly on both machines.

BASICS

Memory is addressed by a 16-bit number that refers to a 16-bit word in the memory. Addresses 0
through 1767778 are true memory storage locations; addresses 1770008 through 1777778 are used to
control 1/0 devices that are attached to the Alto memory bus. Some operations on memory are
performed on "double-words." The double-word beginning at location adr (adr is even) is a 32-hit
guantity equivalent to the 16-bit contents of location adr, together with the 16-bit contents of location
adr+1. (Double-word references operate correctly only on true memory locations, not on 1/0 device
locations.)

MEMORY REFERENCES

Alto | and Alto II: A memory referenceisinitiated by executing F1=1, MAR_. Theresults of aread
operation are delivered somewhat later onto the bus with Bs=5, _MD. A storeinto the addressed
memory location is achieved with F2=6, MD_. The microprogram partially controls memory timing, and
must observe certain rules to insure correct operation.

a) A minimum of one microinstruction must intervene between the initiation of a memory
reference and an MD_ or _MD.

b) Onboth Alto | and Alto I, memory cycleslast atotal of 5 micro-cycles, athough double-
word operations may extend the memory cycle to take atotal of 6 micro-cycles. Although
the exact details of memory timing differ on Alto | and Alto 11, both machines share the
property that the processor will suspend execution of microinstructions if the memory

Alto Hardware Manual Section 2: Microprocessor

©)

d)

e

interface cannot process the function (MAR_, MD_or _MD) specified; processing will resume
as soon astheinterfaceisfree. Itispermissible to "abandon" a memory reference that has

already been started simply by not referencing MD within the first 5 cycles, or by starting a
new memory reference with MAR .

The memory checks parity on all fetches, unless the cycle is arefresh cycle or the addressis
between 1770008 and 1777778 inclusive, in which case an 1/0 device is being referenced.
Parity errors result in activation of a high-priority task (task number 158) whose purposeisto
deal with the error (see section 5.5). The Alto Il checks memory parity on store aswell as
fetch cycles.

If RSELECT = 378 during the instruction which starts the memory, arefresh cycle is assumed
and al memory cards are activated. Thisisused by the refresh task.

MAR_ cannot be invoked in the same instruction as_MD of a previous access.

In the discussion that follows, we assume that a memory reference has been started with MAR_, and we
designate this instruction (micro)cycle 1. Examples of proper sequences are given below.

During cycle5, if F2=6, MD_, a store of bus datainto the word addressed by MAR will
occur. TheMD_may not be issued later than cycle 5. (Note: Some Alto I’ s have been
modified to allow a"double-word store." On these machines, it is permissible to issue two
MD_instructionsin arow, the first coming in cycle 5, and the second in cycle 6. If MARis
loaded with an even address adr, the two words will be stored at adr and adr+1
respectively.)

During cycle 5 of areference, if Bs=5, _MD, the reference is afetch of the word addressed
by MAR. During cycle 6, if Bs=5, _MD, the odd word of the doubleword addressed by MAR
isdelivered. If MD isreferenced during cycle 6, it also must have been referenced (by either
MD or MD) during cycle5.

During cycle 4, if F2=6, MD_, a store of bus data into the word addressed by MAR will
occur. The MD_ may not be issued later than cycle 4. Alto II’s allow a"double-word
store: it is permissible to issue two MD_ instructions in arow, the first coming in cycle 3,
and the second in cycle 4. If MAR isloaded with an address adr, the two words will be
stored at adr and (adr XOR 1) respectively.

During cycle 5, if Bs=5, _MD, the reference is afetch of the word addressed by MAR.
During cycle 6, if Bs=5, _MD, the other word of the doubleword addressed by MAR is
delivered. Again, if MAR isloaded with address adr, the two words fetched will be from
location adr and (adr XOR 1) respectively.

h) Because the Alto Il latches memory contents, it is possible to execute _MD anytime after cycle

Alto |
f)
0)
Alto 11
f)
0)
EXAMPLES

5 of areference and obtain the results of the read operation.

Because the description above is a bit terse, we shall give several examplesfor Alto | operation, for Alto
Il operation, and for coding schemes that will work properly on both kinds of Altos. In the coding
examples, REQUIRED stands for some microinstruction (you supply it) that must appear in the sequence;
SUSPEND stands for a microinstruction which if omitted will cause execution to suspend for one cycle
because the memory interface is not ready; OPTIONAL stands for a microinstruction which may be
omitted without penalty. The notation ANY will be used to stand for an arbitrary 16-bit address; EVEN
will stand for an even 16-bit address. All of these examples apply to extended memory references also
(described in the next section); simply substitute XMAR for MAR.

Alto Hardware M anual

Simple fetch:
Alto |

MAR_ANY;
REQUIRED;
SUSPEND;
SUSPEND;
whereever_MD;

Simple store:
Alto |

MAR_ANY;
REQUIRED;
SUSPEND;
SUSPEND;
MD_whatever;

Section 2: Microprocessor

Alto 1

MAR_ANY;
REQUIRED;
SUSPEND;
SUSPEND;
whereever_MD;

Alto 1

MAR_ANY;
REQUIRED;
OPTIONAL;
MD_whatever;

Simple store, followed immediately by another memory cycle:

Alto |

MAR_ANY;
REQUIRED;
SUSPEND;
SUSPEND;
MD_whatever;
MAR_ANY;

Double-word fetch:
Alto |

MAR_EVEN;
REQUIRED;
SUSPEND;
SUSPEND;
whereever_MD;
whereever_MD;

Double-word storef/fetch:

Alto |

MAR_EVEN;
REQUIRED;
SUSPEND;
SUSPEND;
MD_whatever;
whereever_MD;

Altoll Alto Il
MAR_ANY; MAR_ANY;
REQUIRED; REQUIRED;
REQUIRED; MD_whatever;
MD_whatever; SUSPEND;
SUSPEND; SUSPEND;
MAR_ANY; MAR_ANY;
Altoll

MAR_ANY;

REQUIRED;

SUSPEND;

SUSPEND;

whereever_ MD;
whereever_MD;

Alto 1

MAR_ANY;
REQUIRED;
SUSPEND;
MD_whatever;
whereever_MD;

Double-word store (only on modified Alto 1s):

Alto |

MAR_EVEN;
REQUIRED;
SUSPEND,

Alto Il

MAR_ANY;
REQUIRED;
MD_whatever;

Alto Hardware Manual Section 2: Microprocessor

SUSPEND; MD_whatever;
MD_whatever;
MD_whatever;

The Alto II memory buffering permits a double-word "exchange'”:

MAR_ANY;
REQUIRED;

MD_newcontentsl; address = adr
MD_newcontents2; address = adr XxOR 1
L_MD; address = adr

T _MD; address = adr XOR 1

oldcontentsl L, L_T;
oldcontents2_L;

Microcode which uses the memory timings below will work on either vintage of Alto:
Simple fetch: (asAlto).
Simple store: (as Alto I1). <<<<< Nota Bene
Double-word fetch: (asAlto 1).
Double-word store/fetch: (as Alto I1).
Others are not possible.

EXTENDED MEMORY

Main memory on Alto I1s can be optionally expanded to up to 256k words in 64k banks. Each task has
associated with it four extra bank bits which are presented to the memory along with the 16 bit addresses
generated by the task’s microcode. Normal memory references are microcoded in the usual way and use
two of the bank bits to specify the task’s normal bank. Extended memory references are microcoded
slightly differently and use the two other bank bits to specify the task’s alternate bank. Thus atask can
reference 64K very easily, another 64k with alittle difficulty, and the other two 64k banks only after
loading its bank registers appropriately.

To signal that a memory reference should go to the aternate bank, the microinstruction which loads MAR
must also contain F2=6 (MD_). The microassembler will generate this conbination of functions for a
clause whose left hand sideis XMAR (i.e., XMAR_ address will generate an instruction with F1=1 and
F2=6).

The bank registers appear as 16 words in the 1/0 area which can be read and written. Location (1777408
+N) isthe bank register location for task N. Booting the Alto clears the registers to zeros making all
references for all tasks go to bank zero, thus making the machine operate as a standard Alto without the
extended memory option. Within abank register, the layout is as follows:

BR[0-11] undefined
BR[12-13] normal reference bank number
BR[14-15] extended reference bank number

The highest 512 locations in each bank are not mapped by the bank registers and always refer to the 1/0
area. That meansthat location 1777408 is the emulator’ s bank register regardless of what the referencing
task’ s bank register contains and regardless of whether it is referenced with anormal or an extended
memory reference.

No changes are necessary in order to run the display, disk, or Ethernet in different banks. The easiest
and least confusing way to do thisisto load the bank registers for all concerned tasks (e.g. bvT, DHT and
pwT for the display, or kSeC and KwD for the disk) with some other bank number. Then the deviceis

Alto Hardware Manual Section 2: Microprocessor

controlled by the relevant words of page 1 in its bank.

Programs which use the extended memory must first initialize it to have correct parity. Thisinvolves
disabling parity interrupts, storing something in every word, flushing any parity interrupts that result, and
then reenabling parity interrupts. The standard bootstrap loaders initialize bank zero only.

All Alto lls manufactured starting with the 7" build have the extended memory option but are normally
shipped with memory chips for bank zero only. Some earlier Alto Ils have been modified in the field.
M achines with the extended memory option have engineering number 3 -- see the description of the
VERS instruction.

2.4 Microprocessor Control

Control of the Alto microprocessor is shared among 16 "tasks" arranged in a priority order. The tasks
are numbered O to 15: O isthe lowest priority task and 15 isthe highest. The lowest priority task isthe
emulator task which fetches instructions and executes them.

The only state saved for each task isa"micro program counter,” MPC. The current task number, saved
in the current task register, addresses a 16 by 12 MPC RAM. Theresult isan MPC for the current task; it
isused to address a 1k by 32-bit read-only microinstruction memory (M1 ROMO0) or a 1K by 32-hit
writeable microinstruction memory (MI RAMO), described in section 8. An optional feature of Alto Ils
extends the M1 ROM to 2K or the RAM t0 3K -- see section 8.

BRANCHING

The microprocessor offers alimited branching capability which, although somewhat cumbersome, has
proven adequate for chores undertaken by Alto microcode. The basic ideais that special microprocessor
functions may modify the NEXT field, and consequently alter the flow of control. Modification is
accomplished by oRring various bits into the NEXT field.

Address modification is complicated slightly because the Alto pre-fetches one microinstruction ahead.
Consequently, a branch condition modifies the NEXT field of the microinstruction following the onein
which the condition test is placed. This property is best illustrated with an example:

MI location MI

1008 F2=2 (SH<0), NEXT=101B
1018 ..., NEXT=102B

1028

1038

When the instruction at location 1008 is being executed, the instruction at location 1018 has already been
fetched. Therefore, the sH<0 test modifies the NEXT field of the on-deck instruction, the one at 1018.
Thus the two possible execution sequences are: (1) if L>0 on entering the code above: 1008, 1018, 1028;
(2) if L<0 on entering the code: 1008, 1018, 103B.

TASK SWITCHING

Only one of the 16 tasks is executing microinstructions at any one time. Once atask begins execution, it
continues to execute until it invokes atask switch function that enables switching to another task. A task
is considered digible for execution if its hardware-generated "wakeup signal” is asserted (these signals are
not accessible to the microprogram). The wakeup signals enter a priority encoder that cal culates the
number of the highest-priority eligible task. When arunning task invokes atask switch, control will

TCmMX>» S

nrrzo-on

MR

Instrtftion

Figure 2 -- Processor Control

P
R E S
| N R T
o C y R A MPC RAM
R 8 4 NE O N 16 x 12
!r 0 P R K A D>
T
y R 2 /| 10
Address
d Modification
Logic
CRAM Address
MPX
Addrs Address
Next
Control Control Microinstruction
Address
r RAM ROM Bus
C
8 1K x 32 | 1K x 32
N ~
E > or ’> or
R “ 3K x 32 2K x 32
Data Out Data Out
10
22

Alto Hardware Manual Section 2: Microprocessor 11

switch to another task only if a higher priority task has a wakeup signal held true, or if the current task
no longer has awakeup signal true. In the latter case, control goesto alower priority task. The lowest
priority task isthe cpu emulator, which is always requesting wakeup.

If the processor executes the TASK function (F1=2) during an instruction, the current task register is
loaded (at the end of the instruction) with the number of the highest priority task currently requesting a
wakeup. This causes the next instruction to be fetched from the Rom location specified by the saved
task’sMPC. One additional instruction is executed by the current task before the switch becomes
effective. Thisinstruction may execute task-specific functions, but it must do no NEXT address
moadification, since any such modification would affect the new task. The situation for two streams of
instructions A-F and JM in two different tasks is shown below:

Instruction Instruction Address stored in
being executed being fetched MPC at end of cycle

A B C

B C D

ct D E

D J K

F K L

K3 L M

L E F

E F G

Ynstruction C allows task switchi ng. New task’smpcC = J.
2Instruction J does an operation which removes its task’ s wakeup request.
3Instruction K allows task switchi ng, and the original task is now highest priority.

The BLOcK function (F1=3) is used, by convention, to signal a hardware device associated with the
currently running task to remove its wakeup signal. Thisfunction is not accomplished by the Alto
microprocessor, but rather by the individual device interfaces.

Task switches must occur only at times when the current task has no state in any register (except R
registers dedicated to the task) and has no main memory operation in progress, since thereisno
provision in the hardware for saving thisinformation. That is, all state important to the task must have
been stored in safe places by the end of the microinstruction after the one containing the TAsk function.
Itisnot legal to place TASK functionsin two consecutive microinstructions.

INITIALIZATION

The only way in which the microprogram can affect the task structure is to request atask switch. In
particular, it cannot affect the MPCs of tasks other than itself. This presents an initialization problem
which is solved by having each task start at the location which isits task number (thus the emulator task
findsits first instruction to execute at Mpc=0). Task numbers are written into the MPC RAM during a
reset cycle, which may beinitiated manually or by a cpu instruction (see slO instruction in section 3.3).
Tasks ordinarily begin execution in ROMO0. In order to start tasks in the RAM, there is a mechanism for
modifying the initial MPC’ s of tasks so that they will begin execution in RAMO (see section 8.4)

STANDARD TASKS

The standard Alto and its associated device controllers use many of the available tasks. Detailed
descriptions of the operation of most tasks are found in the sections of this manual relevant to the
hardware devices. Appendix D isalist of the standard tasks.

Alto Hardware M anual Section 3: Emulator

3.0 EMULATOR

The lowest-priority Alto task is called the Emulator task. Thistask is always requesting wakeup, but can
be interrupted by a wakeup request from any other task. In effect, the emulator task is the "background
job." The standard Alto microcode ROM includes standard emulator task microcode for fetching from
Alto memory, decoding, and interpreting instructions from the Standard Instruction Set. 1n the rest of
this chapter we shall frequently use the term "emulator" to mean "standard emulator task microcode.”
This standard microcode can be extended or replaced, usually by executing special emulator task
microcode in the microinstruction RAM.

This section describes microcode versions installed after June 1976. To determine the vintage of a
machine's microcode, see descriptions of si0 and VERS (section 3.2).

3.1 Standard I nstruction Set

REGISTERS

The emulator state is carried from instruction to instruction in several registers:

PC: The "program counter," which contains the 16-bit address of the next instruction to be
fetched and executed. It is actually implemented as R-register 6.

ACO,ACl,AC2,AC3: Theaccumulators, each of which contains 16 bits. Instructions are available
for transferring contents of accumulators to and from memory registers and for performing
arithmetic and logical operations among accumulators. The notation AC(n) is often used to
refer to the contents of accumulator n (n=0,1,2,3). These accumulators are implemented as
R-registers 3-0 respectively.

Cc: The"carry" hit which is modified by most arithmetic operations. It is implemented as special
hardware (see section 3.5).

MEMORY: TheAlto has"64K" 16-bit memory words, addressed by values ranging from 0 to
1767778. Addresses 1770008 to 1777778 are reserved for various 1/0 device uses (see
Appendix B). Memory on Alto Ils can be extended to 256K in 64K banks (see Section 2.3).

Additional R- and S-registers may be used temporarily during emulation of a single instruction.

INSTRUCTION FORMAT

The standard instruction set is best described by breaking it into four groups according to the way the
instructions are formatted (see Figure 3).

Severa of the instructions compute an "effective address’ based on the values of the (indirect), X
(index) and DIsP (displacement) fields of the M-group, J-group and some s-group instructions. The
effective address calculation is best described by a brief "program.” First we define the function
SignExtend(x) to represent the sign-extension of the 8-bit number x:

SignExtend(x) = if x > 2008 then x+1774008 else x.

Then EffAddr(), the function to compute the effective address is:

0|1 2 3‘4 5 6|7 8 9|10 11 |12 ‘13 14 15|
0 |MFunc DestAC I X DISP
M_Group LDA (MFunc=1) X=0: Page 0 addressing
STA (MFunc=2) X=1: PC-relative addressing
X=2: Base-register (AC2)
X=3: Base-register (AC3)
0 0 0 [JFunc I X DISP
J_Group JMP (JFunc=0)
JSR (JFunc=1)
ISZ (JFunc=2)
DSZ (JFunc=3)
1 |SrcAC DestAC AFunc SH CY NL SK
A-Group COM (AFunc=0) L (SH=1) Z (CY=1) #(NL=1) SKP (SK=1)
NEG (AFunc=1) R (SH=2) 0 (CY=2) SZC (SK=2)
MOV (AFunc=2) S (SH=3) C (CY=3) SNC (SK=3)
INC (AFunc=3) SZR (SK=4)
ADC (AFunc=4) SNR (SK=5)
SUB (AFunc=5) SEZ (SK=6)
ADD (AFunc=6) SBN (SK=7)
AND (AFunc=7)
0 1 1 AugmentedFunc DISP
S-Group

Figure 3 -- Instruction Formats

Alto Hardware M anual Section 3: Emulator 13

EffAddr() =
[/IThe symbol "E" denotes effective address
E_ (/IVaues of 1,X, and DIsP are from the instruction
if Xx=0 then DISP /I"page 0 addressing"
elseif x=1then SignExtend(DIsP)+pPC /I"relative addressing™
eseif x=2then SignExtend(DIsSP)+AC(2) /I"base register addressing”
eseif X=3then SignExtend(DIsP)+AC(3) /I"base register addressing”
if 1 =0thenE_rv(E) /INow do single-level indirection

The notation for these addressing modes is demonstrated below. The bisp value is always specified first;
the x valueis not given explicitly, but is determined either by the address of the label or by a modifier
",2" or ",3" which specifies base register indexing:

JMP LABEL2 ; If LABEL2 is in page 0, X=0; otherw se X=1.
Jw 15,3 ; DI SP=15; 3 neans use AC3 as base register.
IJMP @ ; The character @causes | to be 1.

Note that instructions which compute an effective address always do so before any other operations.
Thus JsR 1,3 computes the effective address of 1+Ac(3) before saving PC+1 in AC3.

MEMORY GROUP OPERATIONS

The pestac field specifies one of the four accumulators (Destac=0 for ACO, DestAc=1 for ACL, etc.).
The mrunc field specifies one of two operations:

Mnemonic MFunc Action

LDA 1 This operation loads an accumulator from memory. AC(DetAC) rv(E).
STA 2 This operation stores an accumulator into memory. rv(E)_AC(DestAC).

These instructions are written by giving the mnemonic, followed by the accumulator number (DestAC),
followed by an effective address notation:

STA 3 . +4 ; Store AC3 in the fourth location follow ng here
LDA 0 4,2 ; Load ACO from address=4+AC(2)
LDA 0 @ +2 ; Load ACO from address contained in second | ocation follow ng here

JUMP AND MODIFY GROUP OPERATIONS
The Jrunc field specifies one of four operations:

Mnemonic JFUNC Action

IMP 0 This operation causes a"jump” by changing the value of thePc. PC_E.

JSR 1 This operation is useful when calling subroutines because it saves areturn
addressin AC3. AC(3)_Pc+1; PC E.

1Sz 2 This operation increments the contents of a memory cell and skipsif the

new contents are zero. rv(E)_rv(g)+1; if rv(e)=0then pc_pc+1. This
instruction does not alter the C bit.

DSz 3 This instruction decrements the contents of a memory cell and skipsif the
new contents are zero. rv(E)_rv(g)-1; if rv(E)=0 then pC_pc+1. This
instruction does not alter the c bit.

Alto Hardware M anual Section 3: Emulator 14

These instructions are written by giving the mnemonic and the effective address notation:

JSR SUBR ; AC3 is left pointing to the |location after this one
Jw 1,3 ; Junp to AC(3)+1

ARITHMETIC GROUP OPERATIONS

All 8 of these instructions operate on the contents of the accumulators and the carry bit. Typicaly, a
binary operation involves the contents of the "source accumulator” (SrcAc) and the "destination
accumulator" (DestAC) and leaves the result in the destination accumulator. The carry bit (C bit) and the
PC can also be modified in the process.

The operation of the instructionsis best explained by following the flow in Figure 4. The 16-bit contents
of the source and destination accumulators are fetched and passed to the function generator.

The carry generator produces an output that depends on the value of the ¢ bit and the cy field of the
instruction:

Mnemonic ¢y Output

none 0 c

z 1 0

0 2 1

c 3 1-c (i.e., the complement of C).

The function generator is controlled by the AFunc field; various values will be described below. It takes
two 16-bit numbers and a carry input and generates a 16-bit Result and a carryResult.

The shifter is controlled by the sH field in the instruction:

Mnemonic SH Action

none 0 No shifting; the 17 output bits are the same as the 17 input bits.

L 1 Rotate the 17 input bits left by one bit. This has the effect of rotating bit
0 left into the carry position and the carry bit into bit 15.

R 2 Rotate the 17 bitsright by one bit. Bit 15 isrotated into the carry
position and the carry bit into bit O.

S 3 Swap the 8-bit halves of the 16-bit result. The carry is not affected.

The skip sensor tests various of the 17 bits presented to it and may cause askip (PCc_pc+1) if an
appropriate condition is detected:

Mnemonic sk Action

none 0 Never skip

SKP 1 Always skip

szc 2 Skip if the carryResult is zero

SNC 3 Skip if the carryResult is non-zero

SZR 4 Skip if the 16-bit Result is zero

SNR 5 Skip if the 16-bit Result is non-zero

SEZ 6 Skip if either carryResult or Result is zero

SBN 7 Skip if both carryResult and Result are non-zero

To/From Memory

DestAC

Carry

Accumulators

Carry Generator

1

SrcAC

16

DestAC

16

Function Generator

16

Shifter

Skip Sensor

1

16

P Governed by NL 4r

—f

t

Figure 4 -- Instruction Execution

Alto Hardware Manual Section 3: Emulator 15
The alert reader will detect that the sk field ismicrocoded. The skip condition can be described as:

skip= (sk[2]=0) XOR

((sk[0]=0 AND result=0) OR (sk[1]=0 AND carryResult=0))

where sk[0Q] isthefirst bit of the field, sk[1] the second and sk[2]the third.
The NL bit in the instruction controls the operation of the switch in theillustration. If NL=1, neither the
destination accumulator nor the carry bit is loaded; otherwise the destination accumulator is loaded from
Result and the carry bit from carryResult. The "no-load" feature is useful for instructions whose only
useistesting some value. The character # is appended to the mnemonic for operationsif the NL bit is
to be set.
The AFunc operations are described below. Note that "Result” will be stored into the destination
accumulator (DestAC) unless NL=1.

Mnemonic AFunc Operation Description

COM 0 COMPLEMENT The function generator produces the logical complement
of AC(SrcAC). It passesthe carry bit unaffected.

NEG 1 NEGATE The function generator produces the two’s complement
of AC(srcac). If Ac(srcAC) contains zero, complement
the value of the carry supplied to the function generator,
otherwise supply the specified value.

MOV 2 MOVE The function generator passes AC(SrcAC) and the carry
bit unaffected.

INC 3 INCREMENT The Result produced is AC(SrcAC)+1; the carry is
complemented if AC(SrcAC)=177777B.

ADC 4 ADD COMPLEMENT The Result produced is the sum of Ac(DestAC) and
the logical complement of Ac(srcAC). The carry bit is
complemented if the addition generates a carry.

suB 5 SUBTRACT Subtracts by adding the two’s complement of AC(SrcAc)
to Ac(DestAC). The carry bit is complemented if the
addition generates acarry.

ADD 6 ADD Adds AC(SrcAC) to AC(DestAC). Thecarry hitis
complemented if the addition generates a carry.

AND 7 AND The Result isthe logical and of Ac(srcac) and

Ac(DestAC). The carry is passed unaffected.

The arithmetic instructions are written by citing the AFunc mnemonic, followed optionally by the cy
mnemonic, followed optionally by the sH mnemonic, followed optionally by the NL mnemonic. Then
after a space, the source accumulator number is given, the destination accumulator number, and

optionally an sk mnemonic. For example:

SUB 0 O ; Zero ACO by subtracting it fromitself
MOVZ 2 1 ; Move AC2 to ACL, and zero C

SuUBZL 1 1 ; Set ACLl to 1

ADC 0 O ; Set ACO to 177777B

SUB# 2 3 SNR

COw 1 1 SZR
SuBZ# 1 0 SzZC
ADCZ# 1 0 SZC

; Skips if AC2 and AC3 are unequal but

; affects neither

; Skips if ACL is 177777B but |eaves it unchanged
; Skips if ACO<ACLl unsigned

; Skips if ACO<ACL unsigned

To subtract the constant 1 from AC1:

Alto Hardware M anual Section 3: Emulator 16

NEG 1 1
coM1 1

To OR together the contents of ACO and AC1,; result in ACO:

coM1 1
AND 1 0
ADC 1 0

To XOR together the contents of ACO and AC1; result in ACO:

MOV O 2
ANDZL 1 2
ADD 1 O
SUB 2 0

To negate a double-length number in ACO and AC1:

NEG 1 1 SNR
NEG 0 0 SKP
coM 0 0

To add the double-length number in Ac2,Ac3 to onein AcO,ACL:

ADDZ 3 1 SzC
INC 2 2
ADD 2 0

To subtract the double-length number in Ac2,Ac3 from one in ACO,ACL:

SUBZ 3 1 SZC
SUB 2 0 SKP
ADC 2 0

The Bepl construct "if agr b then ..." uses code which does a subtract and checks the sign.
Unfortunately, thisis not atrue signed compare because the subtract may overflow. With this
code, 2 gr O istrue, but 0777778 gr 1000008 isfalse (0777778 is the largest positive number and
1000008 the largest negative). The code generated by Bepl looks like:

LDA 0 4,2 ; Pick up a

LDA 1 5,2 ; Pick up b

ADCL# 1 0 SzC ; Subtract and check sign
JMP fal sePart ; Not true

JMP truePart ; True

The "true signed compare" for a>bis:

LDA 0 4,2 ; Pick up a

LDA 1 5,2 ; Pick up b

SUBZR 2 2 ; Place 100000B in AC2

AND 1 2 ; AC2=(if b<O then 100000B el se 0)

ADDL 0 2 ; CARRY=(if a and b signs differ then 1 else 0)

ADCH# 1 0 SNC
JWP fal sePart
JMP truePart

S-GROUP INSTRUCTIONS

Opcodes in the range 60000B-777778, are assigned to the s-group, which comprises a variety of
miscellaneous instructions and unimplemented operations. Bits 3 through 7 of the instruction determine
32 opcodes, each of which may use the displacement field (bits 8-15 of the instruction). One of these
opcodes (61xxx, 0<xxx<3778B) uses the displacement field to represent up to 256 instructions which do
not require a displacement or a parameter as part of the opcode.

Alto Hardware M anual Section 3: Emulator 17

Currently, only asmall number of the available s-group instructions have been implemented. The
remaining unimplemented instructions all trap in one of two ways:

ROM trap PC issaved in location TRAPPC, and then a IMP@ TRAPVEC+OP instruction is simulated.
OP is hits 3-7 of the trapping instruction.

TRAPPC 5278 When an unimplemented opcode is executed by the emulator,
the PC is saved here. It pointsto the location after the
trapping instruction.

TRAPVEC 530B-5678 Contains pointers to the trap routines for the 32 opcodes (bits
3-7 of the trapping instruction). The first word corresponds
to opcode 60xxx, 0<xxx<377B.

RAM trap If no microinstruction RAM is present, the trap is handled asaRoMm trap. If arAM is
present, the microcode transfers to location TRAPL in the RAM with the trapping instruction
inL, theinstruction cycled by 8 bitsin the R-register XReG, and PC pointing to the
location after the trapping instruction.

This arrangement makes it convenient to extend the Alto’s standard instruction set by implementing
additional functionsin software which is dispatched to via TRAPVEC, or in microcode which is dispatched
toviaaRrAM trap. An appendix tabulates the s-group instruction set opcodes and what each does or how
it traps.

MUL 610208 Unsigned multiply:

Multiply the unsigned integersin AC1 and AC2 to generate a 32-bit product; add the product to
theinteger in ACO. Leave the high-order part of the result in ACO and the low-order part in ACL.
AC2 is unaffected.

DIV 610218 Unsigned divide:

The double-length unsigned integer in AcO and Ac1 is divided by the unsigned integer in AC2.
The quotient isleft in AC1; the remainder in ACO. AC2 isunaffected. Theinstruction normally
skips the next instruction; if overflow occurs (AcO > Ac2 unsigned), DIV does not skip.

CYCLE 600008 Left cycle ACO:

Left cycle (rotate) the contents of AcO by the amount specified in instruction bits 12-15, unless
thisvalueis zero, in which case cycle ACO |eft by the amount specified in bits 12-15 of Ac1.

JSRII 644008 Jump to subroutine double indirect, pC relative:

AC3_PC+1
PC_rv(rv(PC+SignExtend(DISP)))

JSRIS 650008 Jump to subroutine double indirect, AC2 relative:

AC3_PC+1
PC_rv(rv(Ac2+SignExtend(DIsP)))

Alto Hardware M anual Section 3: Emulator

CONVERT 670008 Scan convert afont character:

The CONVERT instruction does scan conversion of characters, i.e., it transfers data between an
area of main memory containing afont and an area of memory containing a bit map to be
displayed on the Tv monitor.

CONVERT takes a number of arguments;

ACO contains the address of the destination word into which the upper left corner of the
character isto be placed, offset by NWRDS, the number of words to be displayed on each scan
line (ACO=DWA-NWRDS).

AC3 points to a character pointer in the font for the character to be displayed
(AC3=FONTBASE+CHARACTER CODE).

AC2+SignExtend(DIsP) is the address of atwo-word table:
word O: NWRDS (number of words per to scan ling); NWRDS < 128.

word 1: DBA, the destination bit address corresponding to the left hand edge of the
character. CONVERT interprets this bit address reversed from the normal
convention, i.e., 0 isthe least significant bit, 15 the most significant bit.

CONVERT requires that a 16 word mask table be set up starting at MASKTAB (460B) in page 1.
r'v(MASKTAB+N)=(2M(n+1))-1 (0< _ n< 15).

The format of an Alto font designed for use with CONVERT is given below; names of font filesin
thisformat conventionally have an extension ".AL". The CONVERT instruction does not examine
the words at FONTBASE-2 and FONTBASE-1; these are provided solely for convenience of software.

FONTBASE-2:

The height of aline of text in scan lines. This number incorporates the effects
of the highest and lowest character in the font, i.e. it is max(HD+XH)-min(HD)
where the max and min are taken independently and HD and XH are defined
below.

FONTBASE-1:

Bit O: 0 = Fixed width font.
1 = Proportional width font.

Bits 1-7: Baseline -- number of scan-lines from top of highest character in
font to the baseline.

Bits8-15: The width of the widest character in raster points.

FONTBASE t0 FONTBASE+377B:
Self-relative pointers to word xw of the character descriptor block for the
character codes 0-3778.

FONTBASE+400B t0 FONTBASE+400B+EXTCNT-1:

These locations contain self-relative pointers to word xw of the character
descriptor blocks for extensions, i.e., portions of characters which are wider than
16 bits. EXTCNT isthe total number of character extensions.

Alto Hardware M anual Section 3: Emulator 19

RCLK

SIO

FONTBASE+400B+EXTCNT to end:
Contains a number of character descriptor blocks of the form:

word 0 to word Xw-1:
The bit map for the character and surrounding spaces. The bit map
does not include O’ s at the top and bottom of the character, asthe
character will be vertically positioned by CONVERT. The upper left-hand
bit of the character isin the msB of word 0.

word Xw:
If the character is < 16 bits wide, this word contains (2*width)+1. If
the character is > 16 bits wide, this word contains 2* a pseudo-character
which is used as a character code to index an extension character in the
font. If thisisthe last extension block of a character, thisword contains
(2* the width of the final extension), rather than the total width. The
pointer indexed by the character code points to this word.

word Xw+1:
In theleft byte, HD. Intheright byte, XH. HD isthe number of scan
lines to skip before displaying the character, XH isthe height of the bit
map for this character.

The CONVERT instruction ORs the character bitmap into the display area. |If the character does
not require an extension, CONVERT skips, with the following information in the AC’s:

ACO: unchanged

AC1: DBA AND 178

AC2: unchanged

AC3: thewidth of the character in bits

If the character requires an extension, CONVERT returns does not skip. AC3 contains the pseudo-
character code for the extension, and AC’s 0-2 are as above.

61003B Read Clock:

The microcode maintains a 26 bit real time clock which isincremented by the memory refresh
task at 38.08 microsecond intervals (more precisely, once every 224 ticks of the system clock,
whose nominal frequency is 5.880000 MHZz). The high-order 16 bits of this clock are maintained
inlocation RTC (4308) in page 1 The low-order 10 hits are kept in R37. The remaining 6 bits of
R37 contain state information unrelated to the time. RCLK loads AcO with the contents of

location RTC, and loads Ac1 with the contents of R37. The period of the full 26-bit clock is

about 40 minutes.

The contents of R37 are dightly different on Alto | and Alto I1: on Alto |, R37[0-9] contain the
low order clock hits; on Alto I, R37[4-13] are used. Consequently, on the Alto |, the contents of
Ac0 and Acl returned by RCLK may be viewed as a 32-bit clock in units of .595 microseconds,
provided AC1[10-15] isfirst zeroed.

610048 Start 1/0:

Start 1/0 isincluded to facilitate 1/0 control. It places the contents of ACO on the processor bus
and executes the STARTF function (F1=178). By convention, bits of Aco must be"1" in order to
signal devices. See Appendix C for asummary of assigned bits.

Alto Hardware M anual Section 3: Emulator 20

BLT

BLKS

SIT

If bit 0 of AcOis1, and if an Ethernet board is plugged into the Alto, the machine will boot, just
asif the "boot button” were pressed (see sections 3.4, 8.4, and 9.2.2 for discussions of
bootstrapping).

slo also returns aresult in ACO. If the Ethernet hardware isinstalled, the serial number and/or
Ethernet host address of the machine (0-3778) isloaded into ACO[8-15]. (On Alto |, the serial
number and Ethernet host address are equivalent; on Alto I1, the value loaded into ACO isthe
Ethernet host address only.) If Ethernet hardware is missing, ACO[8-15] = 377B. Microcode
installed after June 1976, which this manual describes, returns ACO[0]=0. Microcode installed
prior to June 1976 returns ACO[0]=1; thisis a quick way to acquire the approximate vintage of a
machine’ s microcode.

610058 Block transfer:
610068 Block store:

These instructions use tight microcode loops to move a block of memory from one place to
another (BLT) or to store a constant value into a block of memory (BLKS). Block transfer and
block store take the following arguments:

ACO: Address of thefirst source word-1 (BLT), or data to be stored (BLKS).
Acl: Address of thelast word of the destination area.
AC3: Negative word count.

Because these instructions are potentially time consuming, and keep their state in the AC’s, they
areinterruptable. If aninterrupt occurs, the pC is decremented by one, and the AC’'s contain the
intermediate state. On return, the instruction continues. On completion, the AC’'s are:

ACO: Addressof last source word+1 (BLT), or unchanged (BLKS).
Acl: Unchanged.

AC2: Unchanged.

Ac3. 0.

The first word of the destination area (AC1 + AC3 + 1) isthefirst to be stored into.

610078 Start interval timer:

The microcode implements an interval timer which has a resolution of 38.08 microseconds, and a
maximum period of 10 bits. Because the principal application for thistimer isto do bit sampling
for aserial EIA-RS232 compatible communications line, the timer is specialized for this purpose.
It uses three dedicated locations in page 1:

ITTIME 5258 Containsthe time at which the next timer interrupt should be caused. On
Alto I, the 10-hit timeis stored in ITTIME[0-9], and the remaining bits must
be zero. On Alto Il, thetimeisstored in ITTIME[4-13], and the remaining
bits must be zero.

ITIBITS 4238 Thisword contains one or more bits specifying the channel or channels on
which the timer interrupt isto occur.

ITQUAN 4228 When the interval timer interrupt is caused, the microcode stores a quantity
in this location which depends on the mode.

The SIT instruction ORs the contents of ACO into R37. The high 14 bits should be O; the low-
order 2 bits determine the interval timer mode:

Alto Hardware M anual Section 3: Emulator 21

R37[14-15]
0 Off.

1 Norma mode. Every 38.08 microseconds, test to seeif (R37 AND
TIMEMASK)=ITTIME (on Alto |, TIMEMASK=1777008; on Alto |1, the proper
value for TIMEMASK is 77748, but version 23 of Alto || microcode uses a
value of 7700B). If they are equal, cause an interrupt on the channel
specified by ITIBITS. Store the current state of the EIA interface in ITQUAN,
and set R37[14-15] to zero. The state of the EIA interfaceis bit 15 of location
EIALOC (177701B) in page 3778. ThishitisOQif thelineisspacing, 1if itis
marking.

Same as 0.

Every 38.08 microseconds, check the state of the EIA line by reading EIALOC.
If the lineis marking (EIALOC is hon zero), do nothing. If thelineis
spacing, cause an interrupt on the channel specified by ITIBITS. Store the
current value of R37 in ITQUAN, and set R37[14-15] to zero.

The intention is that a program which does EIA input can use mode 3 to monitor the line for the
arrival of a character, and can then use mode 1 to time the center of each bit. By storing the
state of the line, the interrupt latency can be as much as 1 bit time without errors.

IJMPRAM 610108 Jump to RAM: (see section 8.5 for details)

Switches the emulator task micro PC to another microinstruction bank in RoM or RAM The next
emulator microinstruction will be determined from the value in Ac1 (mod 1024) -- see the
discussion of bank switching in section 8.4.

RDRAM 610118 Read RAM: (see section 8.5 for details)
Reads the control RAM halfword addressed by Ac1 into Aco.

Note: In Alto Ils running microcode version 2, thisinstruction does not work reliably if the
Ethernet interface is running.

WRTRAM 610128 Write RAM: (see section 8.5 for details)
Writes Aco into the high-order half and Ac3 into the low-order half of the control RAM word
addressed by AC1.

VERS 610148 Version:

ACO isloaded with a number which is coded as follows:

bits 0-3 Alto engineering number

Oorl Alto |

2 Alto Il

3 Alto Il with extended memory
bits 4-7 Alto build number.
bits 8-15 Version number of the microcode.

This instruction permits programs to know the differences among various kinds of Altos. Use of
the Alto build number (bits 4-7) has been abandoned; its contents are undefined. The two
flavors of Alto maintain separate enumerations of microcode versions (see section 9 for some

Alto Hardware M anual Section 3: Emulator

conventions).

DREAD 610158 Double-word read (Alto 11 only):

ACO_rv(Ac3); ACl_rv(AC3 XOR 1)

DWRITE 610168 Double-word write (Alto 11 only):

rv(Ac3) _AcO; rv(AC3 XOrR 1) AcCl

DEXCH 610178 Double-word exchange (Alto 11 only):

t_rv(Ac3); rv(Ac3)_AcO; AcO_t
t rv(AC3 XOR 1); rv(AC3 XOR 1) _AcCl; ACl t

DIAGNOSEL 610228 Diagnostic instruction (Alto Il only):
Thisinstruction starts a special double-word write cycle that also writes the Hamming code check
bits.

rv(177026B)_AC2 (set Hamming code)
rv(Ac3)_AcO; rv(AC3 XOR 1)_AcCl

DIAGNOSE2 610238 Diagnostic instruction (Alto I only):

This instruction writes the same memory location with two different values in quick succession:

rv(Ac3)_AcO
rv(Ac3)_AcO xor ACl
AcO_AcOxorAcl

BITBLT 610248 Bit-boundary block transfer:

An instruction for moving bits around in memory. Itis particularly helpful for dealing with the
display bit map. BITBLT requiresthe RAM to be present in order to use some s registers (418
through 518). If the RAM isnot present, BITBLT will trap asif it were an unimplemented
operation.

CALLING SEQUENCE

The BITBLT function isinvoked with:

ACl: 0
AC2: pointer to BBTable, which must be even.

Only Ac2 is preserved by BITBLT.

The most common errors when using this instruction are failing to align the BBTable on an even
word boundary, failing to zero AC1, and failing to zero FUNCTION[0-9].

The format of the BBTableis:

Alto Hardware M anual Section 3: Emulator
Word Name Remarks
0 FUNCTION Operation, SourceType, Bank, etc
1 unused
2 DBCA Destination BCA
3 DBMR* Destination BMR
4 DLX* Destination LX
5 DTY* Destination TY
6 DW* Destination w
7 DH* Destination H
8 SBCA Source BCA
9 SBMR Source BMR
10 SLX* Source LX
11 STY* Source TY
12 Gray0O Four words to specify gray block...
13 Grayl
14 Gray2
15 Gray3

*These should al be positive values, although if DH<0 or bw<0 then BITBLT isaNOP.

Trick: since BITBLT usesall of the accumulators, BCPL programmers must save AC2, the stack
pointer, somewhere. Put it inword 1 of the BBTable, since AC2 still points at the table after the
instruction finishes, making it easy to recover.

Theinstruction isinterruptable as it begins consideration of each scan line. If an interrupt
happens, the state of its progressis saved in Acl and the Pc is backed up so that on return from
the interrupt, BITBLT will finishitsjob. Thisisthe reason why Ac1 must be zero when starting
the instruction.

DEFINITIONS

A bit map is aregion of memory defined by BCA and BMR, where BCA is the base core address
(starting location) and BMR is the bit map raster width in words; the number of scan linesis
irrelevant for our purposes. (If both BMR and BCA are even, then the bit map may be displayed
on the screen using standard Alto facilities.)

A block is arectangle within abit map. It has four corners which need not fall on word
boundaries. A block is described by 6 numbers:

BCA Bit map’s base core address

BMR Bit map’ swidth in words

LX Block’sleft x ("x offset" from first bit of scan-line)
TY Block’stop v ("y offset" from first scan-line)

W Block’ swidth in bits

H Block’ s height in scan-lines

Example: A block is used to designate a sequence of bitsin memory, such asa 16 wide 14 high
region containing the bit pattern of afont character. In this case, BcA points to the font
character, BMRis 1, LX and TY are O, w is 16, and H is 14. If source and destination blocks
overlap, they had better have the same BCA.

23

Alto Hardware M anual Section 3: Emulator 24

BLOCK OPERATIONS

The basic block operations operate by storing some bitsinto a "destination block." The source
of these hits varies; often it is another block, the "source block." There are various functions
that BITBLT can perform.

The FUNCTION word of the BBTable contains a number of fields:

FUNCTION[0-9] Must be zero

FUNCTION[10] Source block isin the aternate bank
FUNCTION[11] Destination block isin the alternate bank
FUNCTION[12-13] SourceType

FUNCTION[14-15] Operation

The operation field specifies the operation to be performed on the source and destination blocks:

Operation Name Action
0 Replace Destination Block _ Source
1 Paint Destination Block _ Source OR Destination
2 Invert Destination Block _ Source XOR Destination
3 Erase Destination Block _ (NOT Source) AND Destination

The SourceType specifies how the Source as used in the above 4 operations is to be computed.
The encodings are:

SourceType Meaning

0 Sourceisablock of abit map

1 Sourceis the complement of ablock of abit map

2 Sourceisthelogical "and" of asource block and the "gray block” (see
below).

3 Sourceisthe"gray block."

The "gray block™ is conceptually ablock of infinite extent in which a pattern of dotsis repeated.
The pattern is specified by four words (Gray0 through Gray3). These give the patterns to write
into the destination block where called for, one gray word per scan line. The wordswill aign
with destination block word boundaries, but BITBLT will use GrayO through Gray3 in the order in
which BITBLT processes scanlines (either top to bottom (DTY<STY) or bottom to top (DTY>STY)).

The most common use of these gray valuesisto generate a uniform pattern. Whilethe BITBLT
instruction takes care of going through these values appropriately, the table must be phased
properly to eliminate ssams. Specifically, if A B C D are the desired 16-bit word-aligned values of
gray for scan-lines0 1 2 3 (mod 4), then two adjustments must be made:

LetQ=DTY + 1.

If DTY < STY, then exchange B and D and let Q = -(DTY+DH+2).
Rotate the pattern left (i.e., A_B, B_C, etc) atotal of (Q AND 3) times.
Set GrayO_A, Grayl B, Gray2_c, Gray3 D

When the sourceis ablock of bit map, the width and height parameters of the block are not
needed: the width and height of the destination block are also used as the width and height of
the source block. It is permissible for the source and destination blocks to overlap, such as when
dliding an existing block around within a bit map; BITBLT will move wordsin the order required
for the correct results. However, if the source and destination blocks do overlap, they must
belong to the same bit map (i.e., DBCA=SBCA and DBMR=SBMR).

Alto Hardware M anual Section 3: Emulator

XMLDA

XMSTA

TIMING DETAILS
The microcode has roughly the following speed characteristics:

Horizontally, along one raster line (so to speak):

store constant 13 cycles'word
move block 23 cyclesword
if skew not zero add 6

if source not zero add 7

1st or last word add 13
function not store add 6

Vertical loop overhead (time to change raster lines):

14-21 cycles/scanline, depending on source/dest alignment
add 6 if function uses gray

Initial setup overhead (time to start or resume from interrupt):
approximately 240 cycles

Total for atypical character, 8 wide by 14 high:
approximately 1500 cycles
These timings al in units of Alto microinstruction cycles and do include all memory wait time

and do not include any degradation due to competing tasks, such asthe display or disk. For
typical characters on the Alto screen, BITBLT is about 2/3 the speed of CONVERT.

610258 Extended Memory Load Accumulator (Alto I1 only)

Loads AcO from the location addressed by AcC1 in the alternate bank.

610268 Extended Memory Store Accumulator (Alto 11 only)

Stores ACO into the location addressed by AcC1 in the aternate bank. If the the addressed bank
of memory has not been installed, the instruction yields undefined results and will probably
cause a parity error. See section 2.3.

25

Alto Hardware M anual Section 3: Emulator 26

3.2 Interrupts

The emulator microcode provides 15 channels of vectored interrupts. The microcode implements only a
single level of interrupts, however, amulti-level priority interrupt system may easily be implemented in
software (see below).

Interrupts may be caused in two ways:

microcode This method is used by 1/0 device microcode. A device usually has a dedicated location
in which the cpu program places aword containing onesin the bit positions
corresponding to the channels on which to cause interrupt(s) upon completion of 1/0
activity. The emulator is guaranteed to notice an interrupt caused in this way within
one instruction.

software This method is used by acpu program. A program causes interrupts by oring into
location ww one hits corresponding to the channels on which interrupts should occur.
The emulator is not guaranteed to notice an interrupt caused in this way until an EIR
instruction is executed.

When an interrupt occurs, further interrupts are disabled and the state of the interrupted cPu program is
contained in AC0-3, CARRY, and PC, which must be saved and restored by the interrupt routine.
Interrupts can occur between instructions or during long instructions, in which case the instruction’s
intermediate state is saved in the accumulators and PC is backed up so that the interrupted instruction is
re-executed when the interrupt is dismissed.

If two interrupts are requested simultaneously, the one with the highest-numbered channel will be
serviced first.

Theinterrupt system uses a number of fixed locationsin page 1:

ACTIVE 4538 Thisword contains ones for the channels on which interrupts are permitted to
occur. Bit N is set to one to enable channel N. Bit 0 isreserved and should
not be set by any program.

ww 4528 Thisword contains bits for channels on which interrupts are pending. This
information is only vaid while the interrupt system is enabled. Bit
conventions are the same as for ACTIVE. ww is not updated when interrupts
are disabled -- wakeups caused from microcode accumulate in Nww until
interrupts are enabled.

PCLOC 5008 When an interrupt isinitiated, the pC is saved here. If the cPu program allows
nested interrupts, this location must be saved before re-enabling interrupts.

INTVEC 501B-5178 Contains pointersto the service routines for the 15 interrupt channels. The
first word corresponds to channel 15 (bit 15) and the last corresponds to
channel 1 (bit 1). Channel 15 is permanently assigned to handling main
memory parity errors.

Theinterrupt system uses four instructions:

Alto Hardware M anual Section 3: Emulator

DIR 610008 Disable interrupts:
Disables the interrupt system. If more than oneinterrupt isinitiated on a channel while
interrupts are disabled, only one will occur when interrupts are re-enabl ed.

DIRS 610138 Disable interrupts and skip if on:

Disables the interrupt system and skips the next instruction if interrupts were enabled at the start
of thisinstruction.

EIR 610018 Enable interrupts:
Enables the interrupt system. Interruptsinitiated while interrupts were disabled occur after this
instruction.

BRI 610028 Branch and return from interrupt:

Simulates a IMP @PCLOC instruction, and then enables the interrupt system. Interrupts initiated
while interrupts were disabled occur after this instruction.

EXAMPLES

The code below is a sample interrupt handler for one channel, say channel 10. It permits nested
interrupts from higher priority channels, where the priority is determined by software. Thisis
accomplished by turning off all lower-priority channels and re-enabling interrupts (which were disabled
by the microcode at the onset of thisinterrupt). Before dismissing the interrupt, it is necessary to disable
the interrupt system and turn the lower-priority channels back on.

Interrupt: STA 0 SavedACO ; save the interrupted programstate
STA 1 SavedACl
STA 2 SavedAC2
STA 3 SavedAC3
MOVR 0 O
STA 0 SavedCarry
LDA 0 @CLCC
STA 0 SavedPC

LDA
STA
LDA
AND
STA

@ACTI VE ; disable lower priority channels
SavedActi ve

ChanMask

0

Or P OO

@\CTI VE

El R ; re-enable interrupts
; service the interrupt
D R ; disable interrupts

LDA 0 SavedActive
STA 0 @\CTI VE ; re-enable lower priority channels

LDA 0 SavedPC ; restore the interrupted program state
STA 0 @CLCC

LDA 0 SavedCarry

MOVL 0 O

LDA 3 SavedAC3

LDA 2 SavedAC2

LDA 1 SavedACl

LDA 0 SavedAQO

BRI ; dismiss the interrupt
SavedACO: 0 ; these locations nust be private to this channel
SavedACl: 0
SavedAC2: 0
SavedAC3: 0

27

Alto Hardware M anual

SavedCarry: 0

SavedPC: 0

SavedActive: O

PCLOC: 500

ACTI VE: 453

ChanMask: 37 ; contains ones for higher priori

It is customary (though not essential) to assign interrupt channel priorities such t
highest priority and channel 1 the lowest. In this case, the ChanMask for channel i

Section 3: Emulator

28

ty channel s

hat channel 15 hasthe
'sinterrupt routine will

consist of 15-i one bitsright-justified. In any case, ChanMask must contain zero in the bit corresponding to

the interrupt channel being serviced.

The code below initiates interrupts on the channels corresponding to one bitsin Ac0. It must disable

interrupts to prevent ww from being changed by microcode-initiated interrupts.

Causel nt:

AC1 _ ACD CR AC1

R OO
%HH%

the interrupt happens after thi

WY

S

If achannel’s ACTIVE bit is 0 when viewed from non-interrupt level, then the channel isnot in use. The
code below searches ACTIVE for the highest priority free channel. It is careful not to assign the parity
interrupt channel. It then initializes an interrupt handler on that channel and returns aword with aone
in the bit position of the assigned channel. It must not be called from interrupt level.

enter with ACO = the address of the interrupt handl er

I ni t Chan: STA 0 | NTHANDLER
SUB 1 1 ; ACL _ 0
SUBZL 0 O ;) ACO _ 1
LDA 2 @ACTI VE
FFC: MOVZL 0 0 SzC
JMWP fail ; no interrupt channels free.
INC1 1
AND# 0 2 SZR ; free?
JWP FFC ; no. Try the next one
LDA 2 | NTVEC ; install handler in | NTVEC
ADD 1 2
LDA 3 | NTHANDLER
STA3 0 2
LDA 2 @\CTI VE turn on the channel
ADD 0 2 ; cant carry: equivalent to OR
STA 2 @\CTI VE
; ACO = one-bit mask designating the assigned channel
| NTVEC: 501
| NTHANDLER: 0 ; tenp

The code below destroys the interrupt channels corresponding to one bitsin ACO
frominterrupt level.

coM0 O
LDA 1 @\CTI VE
AND O 1

Destroyl nt:

. 1t must not be called

Alto Hardware M anual Section 3: Emulator

STA 1 @ACTI VE

IMPLEMENTATION

In addition to the main memory locations, the interrupt system uses one R-register: NwWw, new interrupts
waiting. Bit 0 of Nww isOif theinterrupt systemis enabled and one if it isdisabled. Thisiswhy there
are only 15 channels of interrupts and why ww[Q] should never be set. 1/0 device microcode ORs bits
into this register to cause interrupts. (N\Ww OR Ww) expresses all pending interrupts.

The main loop of the emulator checks Nww during the fetch of each emulated instruction. If Nww is
greater than zero (i.e., Nww[Q] is not set meaning the interrupt systemis on, and at least one bitis set in
Nww/[1-15] meaning an interrupt is pending on some channel) then the microcode computes (N\Ww OR
WW) AND ACTIVE. If thisquantity is nonzero (i.e., aninterrupt is pending and its channel is active) then
an interrupt is caused. If not, N\ww ORww is stored in ww, NWWw is zeroed, and the instruction is
restarted.

If aninterrupt is caused, the microcode stores the program counter in PCLOC, sets Nww([(] to disable
further interrupts, clears the bit in Nww and in ww corresponding to the channel on which the interrupt
is occurring, and loads PC with rv(INTVEC+15-CHANNEL).

When the interrupt system is disabled (by executing DIR or DIRS or initiation of an interrupt), the
microcode sets NwwW[0]. When the interrupt system is enabled (by executing EIR or BRI), the microcode
clears N\ww[0] and ORS Ww into Nww.

This organization is optimized to minimize the cost (in additional microinstructionsin the emulator main
loop) of the most common case where the interrupt system is enabled and no interrupts are pending.
When abit appears in Nww while the interrupt system is active, it is either cleared by causing an
interrupt or flushed into ww where it is checked less often, since the cost of deciding that an interrupt is
pending but that the channel isinactive istoo high to tolerate on each pass through the main loop. The
assumption in flushing inactive bitsinto ww is that the cpu program will enable interrupts shortly after
changing ACTIVE, and doing so will cause the pending bitsin ww to be reconsidered.

3.3 Bootstrapping

The emulator contains microcode for initializing the Alto in certain ways, and thereby "bootstrapping” a
runnable program into the machine. A "boot," which isinvoked either by pressing the small button at
the rear of the keyboard or by executing an appropriate sIo instruction (see section 3.3), simply resets al
micro-pC’ s to fixed initial values determined by their task numbers. Unless the Reset Mode Register
specifies otherwise (see section 8.4), the emulator task is started in the PROM and performs a number of
operations:

1. Thecurrent value of pC is stored in memory location 0. The emulator accumulators are not

altered during booting.
2. Thedisplay isturned off; i.e. rv(4208)_0.
Interrupts are disabled.
Thefirst keyboard word (KBDAD, 177034B) is read to determine what sort of boot isto be
done:
Disk Boot: If the <BS> key is not depressed, the microcode interprets any depressed keys

reported in this keyboard word as areal disk address. If no keys are depressed,
thisresultsin areal disk address of O.

29

Alto Hardware M anual Section 3: Emulator

The single disk sector at the given addressis read: the 256 data words are read
into locations 1 to 4008 inclusive; the label isread into locations 4028 to 4118
inclusive. When thetransfer is complete, pC_1, and the emulator is started.
The disk statusis stored in location 2, so the bootstrapping code must skip this
location.

Ether Boot: If the <BS> key is depressed, the microcode anticipates breathing life into the
Alto viathe Ethernet. The Ethernet hardware is set up to read any packet with
destination Alto number 3778 into locations 1 to 4008 inclusive. If a packet
arrives with good status and with memory location 2 (i.e., the second word of the
packet) equal to 6028 (a "Breath-of-Life" packet), Pc_3, and the emulator is
started.

More information regarding boot loaders and boot file formats is found with
Buildboot documentation in the Alto Subsystems Manual.

3.4 Hardware

Thereisasmall amount of special hardware which is used exclusively by the emulator. This hardwareis
controlled by the task specific F2's, and by the _DISP bus source.

The R register is used to hold the current instruction. It isloaded with IR_ (F2=14B). IR_also merges
bus bits 0,5,6 and 7 into NEXT[6-9], which does afirst level instruction dispatch.

The high order bits of IR cannot be read directly, but the displacement field of IR (8 low order bits), may
be read with the _DIsP bus source. If the x field of the instruction is zero (i.e., it specifies page 0
addressing) then the DisP field of the instruction is put on Bug[8-15] and BUS[0-7] is zeroed. If the X
field of the instruction is nonzero (i.e. it specifies Pc-relative or base-register addressing) then the bisp
field is sign-extended and put on the bus.

BUS[8-15]_IR[8-15]
BUS[0-7]_if IR[6-7]=0 then O elseif IR[8]=0then 0 else-1

There are two additional F2'swhich assist in instruction decoding, IDISP and _ACSOURCE. The IDISP
function (F2=158) does a 16 way dispatch under control of aPROM and amultiplexer. The values are
tabulated below:

Conditions ORed onto NEXT Comment

if IR[O] =1 then 3-IR[8-9] complement of sH field of IR
eseif IR[1-2] =0 then IR[3-4] IJMP, JSR, 1SZ, DSZ

edseif IR[1-2]=1 then 4 LDA

dseif IR[1-2]=2 then5 STA

edseif IR[4-7]=0 then1

dseif IR[4-7]=1 then 0

edseif IR[4-7]=6 then 168 CONVERT

eseif IR[4-7] =16B then 6

else IR[4-7]

_ACSOURCE (F2=16B) hastwo roles. First, it replaces the two-low order bits of the R select field with
the complement of the sreac field of IR, (IR[1-2] XOR 3), allowing the emulator to address its
accumulators (which are assigned to RO-R3). Second, a dispatch is performed:

30

Alto Hardware M anual Section 3: Emulator 31

Conditions ORed onto NEXT Comment

if IR[0]=1 then 3-IR[8-9] the complement of the sH field of IR
eseif IR[1-2] =3 then IR[5] the Indirect bit of IR

eseif IR[3-7]=0 then 2 CYCLE

dseif IR[3-7]=1 then5 RAMTRAP

dseif IR[3-7]=2 then 3 NOPAR -- parameterless opcode group
dseif IR[3-7]=3 then 6 RAMTRAP

dseif IR[3-7]=4 then7 RAMTRAP

edseif IR[3-7] =118 then4 JSRII

elseif IR[3-7] =128 then 4 JSRIS

eseif IR[3-7] =168 then 1 CONVERT

eseif IR[3-7]=37B then 178 ROMTRAP -- used by Swat, the debugger
else 168 RAMTRAP

ACDEST, F2=13B, causes (IR[3-4] XOR 3) to be used as the low-order two bits of the RSELECT field. This
addresses the accumul ators from the destination field of the instruction. The selected register may be
loaded or read.

The emulator has two additional bits of state, the skiP and CARRY flip flops. CARRY isdistinct from the
microprocessor’s ALUCO bit, tested by the ALuCY function. CARRY is set or cleared as afunction of IR and
many other things (see section 3.1) when the bNS_ (do novel shifts, F2=128B) function is executed. In
particular, if IR[12] istrue, CARRY will not change. DNS also addresses R from (3-1R[3-4]), causes a store
into R unlessIR[12] is set, and sets the skiP flip flop if appropriate (see section 3.1). The emulator
microcode increments PC by 1 at the beginning of the next emulated instruction if skiIP is set, using
BUS+SKIP (ALUF=13B). IR_clears sKIP.

Note that the functions which replace the low bits of RSELECT with IR affect only the selection of R; they
do not affect the address supplied to the constant ROM.

Two additional emulator specific functions, BUSODD (F2=10B) and MAGIC (F2=118), are not peculiar to
emulation, but are included for their general usefulness. BUSODD merges BUS[15] into NEXT[9]. MAGIC s
amodifier appliedto L LSH 1 and L RsH 1 to alow double length shifts. L LSH 1 and L RSH 1 normally

shift zero into the vacated bit position in the shifter output. MAGIC placesthe high order bit of T into

the low order bit of the shifter output on left shifts, and places the low order bit of T into the high order
bit position of the shifter output on right shifts. (The microassembler acceptsL MLSH 1 to specify the
combination of L LSH 1 and MAGIC, and similarly for L MRSH 1.)

The STARTF function (F1=178) is generated by the SO instruction, and is used to define commands for
1/0 hardware, including the Ethernet.

The RsNF function (F1=16B) is decoded by the Ethernet interface, which gates the host address wired on
the backplane onto BuS[8-15]. BUS[0-7] is not driven and will therefore be -1. If no Ethernet interfaceis
present, BUS will be-1.

Alto Hardware Manual Section 4: Display Controller

4.0 DISPLAY CONTROLLER

4.1 Programming Characteristics

The display controller handles transfers between the main memory and the CRT. The CRT is a standard
875 line raster-scanned Tv monitor, refreshed at 60 fields per second from a bit map in main memory.
The CRT contains 606 points horizontally, and 808 points vertically, or 489,648 points total.

The basic way in which information is presented on the display is by fetching a series of words from Alto
main memory, and serially extracting bits to become the video signal. Therefore, 38 16-bit words are
required to represent each scan line; 30704 words are required to fill the screen.

The display is defined by one or more display control blocksin main memory. Control blocks (DCB’S)
are linked together starting at location DASTART(4208) in page 1:

DASTART: Pointer to word 0 of thefirst (top on the screen) DcB, or O if display is off.

DASTART+1: Vertical field interrupt bit mask. Every 1/60 second, thisword is OR’ ed into
NWW to cause interrupts, even if the display is off (i.e., rv(DASTART)=0).

Display control blocks must begin at even addresses in memory, and have the following format:
DCB: Pointer to next bcs, or 0 if thisis the last.

DCB+1: Bit O: 0 = high resolution mode
1 =low resolution mode

Bit 1: 0 = black on white background presentation
1 = white on black background

Bits 2-7 (HTAB): On each scan line of this block, wait 16*HTAB bits before
displaying information from memory.

Bits8-15 (NwRDS): Each scan linein thisblock is defined by NWRDS 16 bit
words. (NWRDS must be even). In order to skip space on the
screen without requiring bit-map, set NWRDS to O.

DCB+2 (SA): Bit map starting address, which must be even.
DCB+3 (SLC): Thishlock defines 2*sLc scan lines, sLC in each field.

At the start of each field, the display controller inspects DASTART and DASTART+1. Aninterrupt is
initiated on the channel(s) specified by the bit(s) in DASTART+1. The controller then executes each bcs
sequentially until the display list or the field ends. At normal resolution, the first scan line of the first
(even) field of ablock istaken from location sA to SA+NWRDS-1, the first scan line of the odd field is
taken from locations SA+NWRDS to saA+2* NWRDS-1. During each display field, the bit map addressis
incremented by an extra NWRDS between each pair of scan lines. In low resolution mode, the video is
generated at half speed, and each scan line is displayed twice (once in each field). During each field, the
bit map addressis not incremented by an extra NWRDS between the display of adjacent scan lines. This
makes the format of the bit map in memory identical for both modes--only the size of the presentation is
affected by the mode.

4.2 Hardware

The display controller consists of a sync generator, a data buffer and serializing shift register, and three
microcode tasks which control data handling and communicate with the Alto program. The hardwareis
shown in block form in Figure 5. The 16 word buffer isloaded from the Alto bus with the DDR_

Alto Hardware Manual Section 4: Display Controller 33

function (F2=108, specific to the display word task bwT, illegal in an instruction which stops the clocks).
The purpose of the intermediate buffer isto synchronize data transfers between the main buffer, which is
synchronous with the 170ns. master clock, and the shift register, which is clocked with an asynchronous

bit clock. The sync generator provides this clock and the vertical and horizontal synchronization signals
required by the monitor.

The bit clock is disabled by vertical and horizontal blanking, and its rate can be set by the microcode to
either 50 or 100 ns. by the function SETMODE (F2=118, specific to the display horizontal task DHT). This
function examines the two high order bits of the processor bus. If bit 0=1, the bit clock rate is set to
100ns period (at the start of the next scan line), and a 1 is merged into NEXT[9]. SETMODE also latches bit
1 of the processor bus and uses the value to control the polarity of the video output. A third function,
EVENFIELD (F2=108, specific to DHT and to the display vertical task DvT), mergesa 1 into NEXT[9] if the
display isin the evenfield.

The display control hardware also generates wakeup requests to the microprocessor tasking hardware.
The vertical task DVT is awakened once per field, at the beginning of vertical retrace. The display
horizontal task is awakened once at the beginning of each field, and thereafter whenever the display
word task blocks. DHT can block itself, in which case neither it nor the word task can be awakened until
the start of the next field. The wakeup request for the display word task (DwT) is controlled by the state
of the 16 word buffer. 1f bwT has not executed aBLOCK, if DHT is not blocked, and if the buffer is not
full, pwT wakeups are generated. The hardware sets the buffer empty and clears the bwT block flip-flop
at the beginning of horizontal retrace for every scan line.

4.3 Display Controller Microcode

The display controller microcode is divided into three tasks. The highest priority task is DvT, the display
vertical task, the next is DHT, the horizontal task, and the third is bwT, the display word task. The
display controller uses 6 registersin Rr:

CBA: Holds the address of the currently active bca+1.

AECL: Holds the address of the end of the currently active scan line's bit map in main
memory.

SLC: Holds the number of scan lines remaining in the currently active bcB.

HTAB: Holds the number of tab words remaining on the current scan line.

DWA: Holds the address of the bit map doubleword currently being fetched for
transmission to the hardware buffer.

MTEMP: Isatemporary cell.

The vertical task initializes the controller by setting SLC to O and CBA to DASTART+1. It also mergesthe
contents of DASTART+1 into Nww, which will cause an interrupt if the specified channel is active. bvT
also sets up information required for the cursor (see below), TASKs and becomes inactive until the next
field.

DHT starts by initiating a fetch to the word addressed by cBA. It checkssLc, and if it is zero, the
controller is finished with the current bca, and the link word of the bcs isfetched. If thisword isnon-
zero, it replaces cBA and processing of anew DCB isbegun. If the link word is zero, DHT blocks until
the start of the next field.

If the check of sLc indicates that more scan lines remain in the current DCB, SLC is decremented by one
and the fetch of (CBA) is used to obtain the second word of the DCB, rather than the link word. The
contents of thisword are used to set the display mode and polarity, and the tab count is extracted and
put into HTAB. NWRDS is extracted, and used to increment bwA and AECL by the appropriate amount,
depending on the mode and field. All the registers required by bwT have now been set up, and DHT
TASKS and becomes inactive until bwT blocks.

Alto Hardware Manual Section 4: Display Controller

If anew DcB isrequired, DHT fetches all four words of the new DCB, and initializes al the registers.
During all scan lines of aDcB except the first, DHT only accesses the first doubleword of the block.

DWT has the sole task of transferring words from memory to the hardware. When it first awakens during
horizontal retrace, it checksHTAB. If it isnon-zero, it enters aloop which outputs HTAB 0’s to the
display. When HTAB is zero, asecond loop is entered which fetches a doubleword from the location
specified by DWA. DWA is compared with AECL, and if they are equal, DwWT blocks until the next scan
line. DWA isincremented by 2, in preparation for the fetch of the next doubleword. If DwA=AECL,

DWT continues to supply words to the buffer whenever it becomes non-full.

4.4 Cursor

Because of the difficulty of inserting a cursor at the appropriate place in the display bit map at
reasonable speed, a hardware cursor isincluded in the Alto. The cursor consists of an arbitrary 16x16 bit
patch, which is merged with the video at the appropriate time. The bit map for the cursor is contained

in 16 words starting at location CURMAP(431B) in page one, and the x,y coordinates of the cursor are
specified by location CURLOC (426B) and CURLOC+1 (427B) in page 1. The coordinate origin for the
cursor is the upper left hand corner of the screen. The cursor presentation is unaffected by changesin
display resolution. Its polarity isthat of the current DCB, or the last DCB processed if it islocated on an
area of the screen not defined by abcs. The cursor may be removed from view in a number of ways.
The most efficient in terms of processing time isto set the x coordinate to -1.

The cursor hardware consists of a 16-bit shift register which holds the information to be displayed on the
current scan line, and a counter which isincremented by the bit clock, and determines the x coordinate
at which the shift register begins shifting.

The hardware is loaded during horizontal retrace by the cursor task microcode, which simply copies the x
coordinate and bit map segment from the R memory into the hardware.

The values of x and the bit map are set up in R by a section of the memory refresh task, whose wakeup
and priority are arranged so that it runs during every scan line after bwT has done all necessary output
and DHT has set up the information required by DwT for the next scan line. MRT checks the current y
position of the display, and if it isin the range in which the cursor should be displayed, fetches the
appropriate bit map segment from CURMAP. When the cursor y position is exceeded by the display, a
flag is set in MRT to disable further processing. The x and y coordinates of the cursor are fetched from
CURLOC and cURLOC+1 at the beginning of each display field by a section of the display vertical task
microcode.

Cursor processing is distributed asit is to minimize the amount of processing which must be done during
the monitor’ s horizontal retrace time. Thistimeis approximately 6 microseconds, and it must include the
worst case latency imposed by tasks at lower priority than the display, plus the worst case disk word
processing time (the disk word task is at higher priority than the display), plus the time necessary for

pwrT to partialy fill the display buffer, plus cursor processing time.

Alto Processor Bus

16

16-word
Buffer

1-word Buffer

Display
Shift Register

Cursor

Shift Register

Bit
Clock

Sync
Generator

Digital
Mixer

Video

Sync

Figure 5 -- Display Control

Buffer
Control

Pointer to next DCB

Resol

BkGnd

Horizontal Tab
] 1]

Bit map address

Scan Lines
] 1

Alto Hardware M anual

5.0 MISCELLANEOUS PERIPHERALS

Section 5: Miscellaneous Peripherals

The Alto can have a number of slow peripherals which appear to programs as memory locationsin the
range 177000-1777778. The standard peripherals are described here.

5.1 Keyboard

The Alto keyboard contains 61 or 64 keys. It appearsto the program as four 16 bit wordsin 4 adjacent
locations starting at KBDAD (177034B). Depressed keys correspond to zeroes in memory, idle keys
correspond to ones. Figure 6 shows layouts of the Microswitch and ADL keyboards, including keytops
and the word number, bit number corresponding to each key. All Alto Isand the morerecent Alto IIs
have Microswitch keyboards; earlier Alto I1s have ADL keyboards, which are somewhat larger and have
columns of function keys on the left and right sides.

ONOODNWNRFRO W
-

el ol)
a b~ wNELO

O~NOUONWNRO @
-

©

10
11
12
13
14
15

KBDAD (1770348)

(zero)

Wr-~— =7 ' Xo<co~Nmo ~o

wn T

KBDAD (1770348)

(zero)

~TV' Xo<cg~Nmo s~

\(FR2)
LF (FL2)
BS

MICROSWITCH KEYBOARD

KBDAD+1 (177035B)

FOX~"O©>»0NO0sSN W

, (comma)
" (quote)

<blank-middle>
<blank-top>

ADL
KBDAD+1 (177035B)

CFOXTO>NO0SNW®

, (comma)
" (quote)
]

FR4

BW

KBDAD+2 (177036B)

1
ESC
TAB

<shift-left>
. (period)

RETURN

DEL
XXX

KEYBOARD

KBDAD+2 (177036B)

1
ESC
TAB

<shift-left>
. (period)

RETURN
_(FR3)
DEL(FL1)
FL3

FL stands for the function keys at the left of the keyboard; FR for those at the right.

Figure 6

KBDAD+3 (177037B)

LTZ0IT<O-=2

~gr
23
mx

+

<shift-right>
<blank-bottom>
XXX

XXX

KBDAD+3 (1770378)

LZ0IT <O

_%r
>3
mx

+
<shift-right>
FR1
FL4
FR5

35

Alto Hardware Manual Section 5: Miscellaneous Peripherals 36

Note: Connecting an Alto | keyboard to an Alto 11 or an Alto Il Microswitch keyboard to an Alto |
requires rewiring a connector or installing an adaptor cable. An ADL keyboard requires additional logic
to connect to an AltoI.

5.2 Mouse

The mouse is a hand-held pointing device which contains two encoders which digitize its position asit is
rolled over atable-top. It also has three buttons which may be read as the three low-order bits of
memory location UTILIN (1770308), in the manner of the keyboard. The bit/button correspondencesin
UTILIN are (depressed keys correspond to 0’'s in memory):

UTILIN[13] Top or Left Button (RED)
UTILIN[14] Bottom or Right Button (BLUE)
UTILIN[15] Middle Button (YELLOW)

The mouse coordinates are maintained by the MRT microcode in locations MOUSELOC(424B)=x and
MOUSELOC+1(425B)=Y in page one of the Alto memory. These coordinates are relative, i.e., the
hardware only increments and decrements them. The resolution of the mouse is approximately 100
points per inch.

5.3 Keyset

The standard Alto includes afive-finger keyset which is presented to the program as 5 bits of memory
location UTILIN (1770308B), similar to the keyboard. The bit/key correspondencesin UTILIN are
(depressed keys correspond to O'sin memory):

UTILIN[8] Key 0 (left-most)
UTILIN[9] Key 1l

UTILIN[10] Key 2

UTILIN[11] Key 3

UTILIN[12] Key 4 (right-most)

5.4 External Device I nterface

Two memory locations, UTILIN (1770308) and UTILOUT (1770168B), provide an interface to external
devices through a connector on the rear of the Alto. If aquantity is stored into uTiLOUT, it islatched

and appears as 16 output signals; if a1 bit is stored, amore negative logic level is generated (TTL "low").
For input, bits 0 to 5 and bit 7 of UTILIN are available; more positive logic levels (TTL "high") are
reported as 1 bits. The remaining bits of thislocation are used by the mouse, keyset and memory
configuration switch.

On the Alto I, this connector also provides various power supply voltages. These are absent on Alto I1.

The Alto Il provides an additional 16-bit input port (the x bus), which can be read by accessing memory
locations 1770208-1770238. The connector on the rear of the Alto Il provides the low 2 bits of memory
address and a signal that indicates the x busis being read, together with the 16 input datasignals. More
positive logic levels (TTL "high") are reported as 1 bits.

The two sections below describe two common devices connected to UTILIN/UTILOUT, the Diablo HyType
printer and Versatec printer/plotter. The descriptions are for the programmer: the bit values (0 or 1)
refer to values that will be stored into uTILOUT or read from UTILIN by an Alto program.

Alto Hardware Manual Section 5: Miscellaneous Peripherals 37

5.4.1 Diablo Printer

The Diablo HyType printer plugs into a connector on the rear of the Alto, and is controlled by
referencing two locationsin Alto memory. None of the timing signals required by the printer are
generated automatically--all must be program generated. For detailed information on the printer, refer to
the Diablo manual .

Location UTILIN (177030B):

UTILIN[O] Paper ready bit. 0 when the printer is ready for a paper scrolling operation.

UTILIN[1] Printer check bit. Should the printer find itself in an abnormal state, it setsthis
bit to 0.

UTILIN[Z] Unused.

UTILIN[3] Daisy ready bit. 0 when the printer is ready to print a character.

UTILIN[4] Carriage ready bit. 0 when the printer is ready for horizontal positioning.

UTILIN[5] Ready hit. Both this bit and the appropriate other ready bit (carriage, daisy,
etc.) must be O before attempting any output operation.

UTILIN[6] (Memory configuration switch -- see section 5.5)

UTILIN[7] Unused.

Location UTILOUT (1770168B):

Severd of the output operations are invoked by "toggling" abit in the output status word. Totoggle a
bit, set it first to 1, then back to O immediately.

uTILOUT[O] Paper strobe bit. Toggling this bit causes a paper scrolling operation.
UTILOUT[]] Restore bit. Toggling this bit resets the printer (including clearing the "check"
condition if present) and moves the carriage to the left margin.
uTILOUT[2] Ribbon bit. When this bit is 1 the ribbon is up (in printing position); when 0,
it isdown.
UTILOUT[3] Daisy strobe bit. Toggling this bit causes a character to be printed.
UTILOUT[4] Carriage strobe bit. Toggling this bit causes a horizontal positioning operation.

UTILOUT[5-15] Argument to various output operations:

1. Printing characters. When the daisy bit istoggled bits 9-15 of thisfield
are interpreted as an AsClI character code to be printed (it should be
noted that all codes less than 408 print aslower case "w").

2. For paper and carriage operations the field is interpreted as a displacement
(-1024 to +1023), in units of 1/48 inch for paper and 1/60 inch for
carriage. Positive is down or to the right, negative up or to the left. The
value is represented as sign-magnitude (i.e., bit 5is 1 for negative
numbers, O for positive; bits 6-15 are the absolute value of the number).

The printer isinitialized by toggling the restore bit, then waiting for all ready bitsto be 0. A typical
output sequence, say printing a character, involves examining the check bit for abnormal status, waiting
for both the ready and daisy ready bits to be 0, then writing in the printer output location the character
code, the character code ored with the daisy strobe bit, and the unmodified code again.

The device behaves more or less like a plotter, i.e. you must explicitly position each character in
software; a print operation does not affect the position of either the carriage or the paper. All coordinates

Alto Hardware Manual Section 5: Miscellaneous Peripherals 38

in paper or carriage operations are relative; the device does not know its absolute position. Again, you
must keep track of thisin software.

WARNING: On Alto I, the printer cable should not be changed (connected or disconnected) while Alto
power ison. The printer power is derived from the Alto power supplies; changing the cable causes a
large transient which usually crashes the processor and does bad things to the disk drive. On Alto 11, the
printer isindependently powered and may therefore be connected or disconnected at any time.

5.4.2 Versatec Plotters and Printer/Plotters

Because of their delightfully simple hardware interface, all manner of Versatec equipment may be driven
from the Alto with ease. The description below gives the signal assignments and a small number of
coding tricks; the programmer should consult a Versatec manual for details (bulletin 6002, Matrix Basic
Interface Description is particularly helpful). The notation * is used below to indicate a signal whose
senseisinverted.

Location UTILIN (1770308B):

UTILIN[1] ONLINE* On-line (inverted).
UTILIN[2] NOPAP No paper.
UTILIN[3] READY* Ready (inverted).

Location uTiLOUT (177016B):

uTILOUT[O] RFFED Remote form feed.

UTILOUT[]] CLEAR Clear print line.

UTILOUT[2] RLTER Remote line terminate.

UTILOUT[3] PICLK* Print clock (inverted).

UTILOUT[4] PRINT* Print select (inverted) -- print=0, plot=1

UTILOUT[5] SPP Simultaneous print/plot.

UTILOUTI[6] RESET Remote reset.

UTILOUT[7] REOTR Remote end of transmission.

UTILOUT[8-15] INO8* tO INO1* Data bits to be sent to the Versatec (inverted). Bit8is
the most significant bit of the nibble; bit 15 isthe least
significant.

None of the timing signals (PICLK) are generated automatically by the Alto--the programmer must cause
the signals to wave appropriately. The Alto |1 DIAGNOSE2 instruction is particularly helpful for
generating the clock signals. The control functions (RFFED, CLEAR, RLTER, RESET, REOTR) are generated
by raising and then lowering them:

LDA 0 FORMFEED
LDA 1 FORMIOGGLE
LDA 3 UTI LOUTADR

DI AGNOSE2
FORMFEED: 114000 ; RFFED + PI CLK* + PRI NT*
FORMIOGGLE: 100000 ; RFFED

UTI LOUTADR: 177016

Data bytes must be sent with care, because the uTiLOUT data lines take alittle time to set up. The data
isfirst set, then the clock bit is toggled, and then the clock bit is toggled again:

Alto Hardware Manual Section 5: Miscellaneous Peripherals

LDA 0 DATA

coOM 0 O ; Note that data nust be inverted
LDA 1 DATANMASK

AND 1 0 ; Save | NO8*-1NO1*, PI CLK*, PRINT*. We're plotting
LDA 3 UTI LOUTADR

STAO 0 3 ; Let data settle--clock is "off"
LDA 1 DATATOGGLE

DI AGNOSE2 ; Toggle clock "on" then "off"
DATA: 111 ; ASCI| code for "I"

DATANASK: 014377 ; PICLK* + PRINT* + data mask
DATATOGGLE: 010000 ; Pl CLK*

UTI LOUTADR: 177016

On Alto |, DIAGNOSE2 is not available, but its effect may be emulated.

5.5 Parity Error Detection

The detection and reporting of parity errors is accomplished somewhat differently on Alto | and Alto 1.
In both machines, the processing of errorsis undertaken by a high-priority microtask, which isinvoked
very soon after an error occurs. The microtask reports a parity error by causing an interrupt on emulator
interrupt channel 15, i.e., by ORing a one into Nww([15]. Bear in mind that parity errors can be generated
by memory references undertaken by any microtask; as aresult, it may be some time between the
occurrence of the error and the next execution of the emulator task and consequent servicing of the
interrupt.

When a parity error happens, the parity task stores the contents of various R registersinto some page 1
reserved locations given below. Unfortunately, the information recorded by the parity task is not
sufficient to determine precisely where the parity error occurred. The intent of the collection isto save
values of the R registers most likely to be used as a source of memory addresses.

Address R-Register Use

6148 DCBR Disk control block fetch pointer

6158 KNMAR Disk word fetch/store pointer

6168 DWA Display word fetch address

6178 CBA Display control block fetch address

6208 PC Current program counter in the emulator

6218 SAD Temporary register for indirection in emulator

Alto Il

The Alto Il memory contains circuitry for correcting single-bit errors and detecting double-bit errors.
The logic expects a good deal of set-up and in turn reports copious error information. Interaction with
the error control is effected through three memory locations (1770248, 1770258 and 1770268). Detailed
information on the operation of the error correction mechanism is best obtained from the logic drawings.

Memory Error Address Register (MEAR = 177024B). Thisregister isa’shadow MAR': it holds the
address of the first error since the error status was last reset. If no error has occurred, MEAR reports the
address of the most recent memory access. Note that MEAR is set whenever an error of any kind (single-
bit or double-bit) is detected.

Memory Error Status Register (MESR = 177025B). This register reports specifics of the first error that
occurred since MESR was last reset. Storing anything into this register resets the error logic and enables it
to detect anew error. Bitsare"low true," i.e. if the bit is 0, the condition istrue.

39

Alto Hardware Manual Section 5: Miscellaneous Peripherals 40

MESR[0-5] Hamming code reported from error
MESR([6] Parity Error

MESR[7] Memory parity bit

MESR[8-13] Syndrome bits

MESR[14-15] Bank number in which error occurred

MESR[14-15] is an extension to the most significant end of MEAR. Thisfield isonly present if the
extended memory option isinstalled (see section 2.3), otherwise it reads out -1.

Memory Error Control Register (MECR = 177026B). Storing into this register is the means for

controlling the memory error logic. Thisregister is set to al ones (disable al interrupts) when the Alto
is bootstrapped and when the parity error task first detects an error. When an error has occurred, MEAR
and MESR should be read before setting the MECR. Bitsare "low true," i.e. a0 bit enables the condition.

MECR[0-3] Spare

MECR[4-10] Test Hamming code (used only for special diagnostics)
MECR[11] Test mode (used only for special diagnostics)
MECR[12] Cause interrupt on single-bit errorsif zero

MECR[13] Cause interrupt on double-bit errorsif zero

MECR[14] Do not use error correction if zero

MECR[15] Spare

Note that MECR[12] and [13] govern only theinitiation of interrupts;, MEAR and MESR hold information
about the first error that occurs after reseting MESR regardless of what kind of errors are to cause
interrupts.

ADDRESS MAPPING

The mapping of addresses to memory chips can be altered by the setting of the "*memory configuration
switch." This switch islocated on the front of AltoI's, and at the top of the backplane of the Alto I1.
The current setting of the switch is reported in bit 6 of UTILIN (location 1770308): if thisbit is O, the
switchisin the"normal” position ("up" on Alto I, "back™ on Alto I1), otherwise the switchisin the
"dternate” position. On Alto I, if the switch isin the alternate position, the first two 16K portions of
memory are exchanged (i.e., the memory address is modified by the algorithm: if MAR[0]=0 then
MAR[1] MAR[1] XOR1). On Alto I, if the switch isin the alternate position, the first and second 32K
portions of memory are exchanged (i.e., the memory address is modified by the algorithm:

MAR[O] _MAR[0] XOR 1).

In order to fix many memory problems, it is necessary to know the mapping between memory addresses
(and bit numbers) to actual memory chips on the memory boards. Herewith the mapping, givenin the
style of a program: the algorithm is given the memory address (address) and the bit position in the word
(bit). The function odd(x) returnstrue if the 16-bit number x is odd. The variable switch corresponds to
the setting of the memory configuration switch (i.e., switch_UTILIN[6]).

Alto |

The variables row and column are the "coordinates’ of the memory chip on the given cardSot, as printed
by the memory diagnostic. The chipNumber is the chip number on the memory board. Bit 16 isthe
parity bit.

if address[0]=0 then (if switch=1 then address[1]_address[1] xor 1)
row_address]2-4]

cardSlot_(address[0-1])*4 + 13

if odd(address) then card_card+2

column_hit

if bit> 12 then[card_card+1; column_bit-5]

Alto Hardware Manual Section 5: Miscellaneous Peripherals 41

chipNumber_ 15 + column + 14*row
Alto I

The Alto Il memory system is organized around 32-bit doublewords. Stored along with each double
word is 6 bits of hamming code and a parity bit for atotal of 39 bits:

bits 0-15 even dataword
bits 16-31 odd dataword
bits 32-37 Hamming code
bit 38 parity bit

Things are further complicated by the fact that two types of memory chips are used: 16K chipsin
machines with the extended memory option (see section 2.3), and 4K chips for all others.

The bitsin a 1-chip deep slice of memory are called agroup. A group contains 4K or 16K double
words, depending on chip type. The bits of agroup on asingle board are called a subgroup. Thusa
subgroup contains 10 of the 40 bitsin agroup. There are 8 subgroups on amemory board. Subgroups
are numbered from the high 3 bits of the address: for 4K chips this means MAR[0-2]; for 16K chips (i.e.
an Alto with extended memory) this means BANK.MAR[0]:

Subgroup chip positions

81-90
71-80
61-70
51-60
41-50
31-40
21-30
11-20 Nearest the edge connector

OFrRLrNWA~OOIO N

Thelocation of the bitsin group O is:

CARD 1 CARD 2 CARD 3 CARD 4
32 24 16 08 00 | 33 25 17 09 01 | 34 26 18 10 02 | 35 27 19 11 03
36 28 20 12 04 | 37 29 21 13 05 | 38 30 22 14 06 | XX 31 23 15 07
A AN A A

chip position 11

Chips 15, 25, 35, 45, 55, 65, 75, and 85 on board 4 aren’t used. If you are out of replacement memory
chips, you can use one of these, but then the board with the missing chips will only work in Slot 4.

The algorithm for converting address and bit into cardSot and chipNumber is (the variable 'xm’ istrueif
the Alto has extended memory):

if odd(address) then bit_bit+16
a: if switch=1 then address[0] address[0] xor 1
cardSlot_ (bit mod 4) +1
chipNumber_ hit/8 + 16 - (if odd(bit/4) then 5 else 0) +
10* (if xm then address[0] else address[0-2]) +
(if xm then bank*20 else 0)

A second entry to this algorithm is with an address (usually read from MEAR), and a syndrome (usually
read from MESR, but remember that it must be complemented: syndrome_(rv(MESR))[8-13] XOR 778)).

Alto Hardware Manual Section 5: Miscellaneous Peripherals

bit_syndromeM apping[syndrome] (see table below)
if bit=-1 then error ("impossible" syndrome)
enter the algorithm above at a.

The syndromeM apping maps a 6-bit number (range 0 to 63) into the number of the bad bit (0 to 38)
or -1if the syndrome isincorrect:

0 1 2 3 4 5 6 7
o 38 3y 36 -1 3B -1 18 -1 (syndromevauesOto7)
10 34 29 14 -1 7 102 -1
20 3 27 12 -1 5 -1 20 -1
30 2 31 16 -1 9 1024 -1
40 32 26 11 -1 4 -1 19 -1
5o 1 30 15 -1 8 -1 23 -1
60 0O 28 13 -1 6 -1 21 -1
3 -1 17 -1 10 -1 25 -1

Alto Hardware M anual Section 6: Disk and Controller 43

6.0 DISK AND CONTROLLER

The disk controller is designed to accommodate one of avariety of DIABLO disk drives, including models
31 and 44. Each drive accommodates one or two disks. Each disk has two heads, one per side.
Information is recorded on each disk in a 12-sector format on each of up to 406 (depending on the disk
model) radial track positions. Thus, each disk contains up to 9744 recording positions (2 heads x 12
sectors x 406 track positions). Figure 7 tabulates various useful information about the performance of the

disk drives.

DEVICE DIABLO 31 DIABLO 44
Number of drives/Alto lor2 1
Number of packs 1 removable 1 removable
1 fixed
Number of cylinders 203 406
Tracks/cylinder/pack 2 2
Sectors per track 12 12
Words per sector 2 header 2 header
8 label 8 label
256 data 256 data
Data words/track 3072 3072
Sectors/pack 4872 9744
Rotation time 40 25 ms
Seek time (approx.) 15+8.6* sgrt(dt) 8+3* sgrt(dt) ms*
min-avg-max 15-70-135 8-30-68 ms
Average access to 1 megabyte 80 32 (using both packs) ms
Transfer rate:
peak/avg 1.6/1.22 25/1.9 MHz
peak/avg 10.2/13 6.7/8. ny/word
per sector 33 21 ms
for full display 460 .266 sec
for 64k memory 1.03 .6 Sec
whole drive 19.3 44(both packs) Sec

* The notation dt stands for the number of tracks traveled during the seek.

The disk controller records three independent data blocks in each sector. Thefirst istwo words long,

and isintended to include the address of the sector. Thisblock is called the Header block. The second
block is eight words long, and is called the Label block. Thethird block is 256 words long, and is the
Data block. Each block may be independently read, written, or checked, except that writing, once begun,
must continue until the end of the sector.

When a block is checked, information on the disk is compared word for word with a specified block of
main memory. During checking, a main memory word containing O has special significance. When this
word is encountered, the matching word read from the disk is stored in its place and does not take part

in the check. This feature permits a combination of reading and checking to occur in the same block.

(It also has the drawback of making it impossible to use the disk controller to check for words containing

O onthedisk.)

The Alto program communicates with the disk controller via afour-word block of main memory
beginning at location KBLK (521B). The first word isinterpreted as a pointer to a chain of disk command

blocks. If it contains O, the disk controller will remainidle. Otherwise, the disk controller will

commence execution of the command contained in the first disk command block. When acommand is
completed successfully, the disk controller storesin KBLK a pointer to the next command in the chain
and the cyclerepeats. If acommand terminatesin error, a0 isimmediately stored in KBLK and the disk

Alto Hardware M anual Section 6: Disk and Controller 44

controller idles. At the beginning of each sector, status information, including the number of the current
sector, isstored in KBLK+1. This can be used by the Alto program to sense the readiness of the disk

and to schedule disk transfers, for example. When the disk controller begins executing a command, it
stores the disk address of that command in KBLK+2. Thisinformation is later used by the disk
controller to decide whether seek operations or disk switches are necessary. It can be used by the Alto
program for scheduling disk arm mation. If the Alto program stores an illegal disk address (like -1) in
thisword, the disk controller will perform a seek at the beginning of the next disk operation. (Thisis
useful, for example, when a disk driver wants to force arestore operation.) The disk controller also
communicates with the Alto program by interrupts (see Section 3.2). At the beginning of each sector
interrupts are initiated on the channels specified by the bitsin KBLK+3.

KBLK (5218B): Pointer to first disk command block.
KBLK+1 (522B): Status at beginning of current sector.
KBLK+2 (523B): Disk address of most-recently started disk command.

KBLK+3 (524B): Sector interrupt bit mask.

A disk command block is aten-word block of memory which describes a disk transfer operation to the
disk controller, and which is also used by the controller to record the status of that operation. The first
word isa pointer to the next disk command block in this chain. A 0 meansthat thisisthe last disk
command block in the chain. When the command is complete, the disk controller storesits status in the
second word. The third word contains the command itself, telling the disk controller what to do. The
fourth word contains a pointer to the block of memory from/to which the header block will be
transferred. The fifth word contains a similar pointer for the label block. The sixth word contains a
similar pointer for the data block.

The seventh and eighth words of the disk command block control the initiation of interrupts when the
command block isfinished. If the command terminates without error, interrupts are initiated on the
channels specified by the bitsin bce+6. However, if the command terminates with an error, the bitsin
DCB+7 are used instead.

The ninth word is unused by the disk controller, and may be used by the Alto program to facilitate
chained disk operations. The tenth word contains the disk address at which the current operation isto
take place.

DCB: Pointer to next command block.

DCB+1: Status.

DCB+2: Command.

DCB+3: Header block pointer.

DCB+4: Label block pointer.

DCB+5: Data pointer.

DCB+6: Command complete no-error interrupt bit mask.
DCB+7: Command complete error interrupt bit mask.
DCB+8: Currently unused.

DCB+9: Disk address.

A disk address word A contains the following fields:

FIELD RANGE SIGNIFICANCE
A[0-3] 0-138 Sector number.
A[4-12] 0-6258 (Model 44) Cylinder number.
0-3128 (Model 31)
A[13] 0-1 Head number.
A[14] 0-1 Disk number (see also C[15]). O is removable pack

on Model 44. 1 is optional second Model 31 drive.

Alto Hardware M anual

A[15] 0-1

A disk command word C contains the following fields:

FIELD RANGE
C[0-7] 1108
C[8-9] 0-3
C[10-11] 0-3
C[12-13] 0-3
C[14] 0-1
C[15] 0-1

A disk status word S has the following fields:

FIELD VALUES
S[0-3] 0-138
S[4-7] 178
SE 0-1
9] 0-1
S[10] 0-1
S[11] 0-1
S[12] 0-1
S[13] 0-1
S[14-15] 0-3

Section 6: Disk and Controller 45

0 normally.
1if cylinder O isto be addressed via a hardware
"restore” operation.

SIGNIFICANCE
Checked to verify that thisis avalid disk command.

0 if Header block to be read.
1if Header block to be checked.
2 or 3 if Header block to be written.

0if Label block to be read.
1if Label block to be checked.
2 or 3if Label block to be written.

0if Datablock to be read.
1if Datablock to be checked.
2 or 3if Datablock to be written.

0 normally.

1if the command isto terminate immediately after
the correct cylinder position is reached (before any
dataistransferred).

XOR’ed with A[14] to yield hardware disk number.

SIGNIFICANCE
Current sector number.

One can tell whether status has been stored by
setting thisfield initially to 0 and then checking for
non-zero.

1 means seek failed, possibly duetoillega cylinder
address.

1 means seek in progress.
1 means disk unit not ready.

1 means data or sector processing was late during the
last sector. Data and current sector number
unreliable.

1 means disk interface was not transferring data last
sector.

1 means checksum error. Command allowed to
proceed.

0 means command completed correctly.

1 means hardware error (see §[8-11]) or sector
overflow.

2 means check error. Command terminated instantly.
3 means disk command specified illegal sector.

Severa clever programming tricks have been suggested to drive the disk controller. For an initial
program load, KBLK should be set to point to adisk command block representing a read into location

Sector Cylinder Head [Drive Rst
1 1 1 1 1 1 1 1 1
Disk Address
1 1 L | 1 1 L] T 1 L]
Header Label Data No .
Command Seal (110B) Action Action Action Xfer Drive
]] 1]] 1 1] 1
1 1
1
) 0: Read
Disk Command 1: Check
2 or 3: Write
1 1 1 1 L] 1
: Seek Not Data ChSm | Completion
Sector -1 if done Fail Seek Rdy Late Idle Error Code
]]]] 1]
I —
Disk Status 0: Good status
1: Hardware error
2: Check error
3: lllegal sector
0 Pointer to next KCB 521 Pointer to next KCB
1 Disk status 522 Status at beginning of sector
2 Disk command 523 Disk address of most recent KCB
3 Header record memory address 524 Sector interrupt bit mask
4 Label record memory address
5 Data record memory address Reserved Page 1 Locations
6 No-Error Interrupt bit mask
7 Error Interrupt bit mask
10 Reserved
11 Disk address

Disk Command Block (KCB)

Figure 8 -- Disk Data Structures

Alto Hardware M anual Section 6: Disk and Controller

STRT. Before setting KBLK, the Alto program should put a JMP STRT instruction in STRT; afterward it
should jump to STRT. The disk controller transfers data downward, from high to low addresses, so that
when location STRT is changed the reading of the block is complete. (See section 3.4 on the standard
bootstrap loading microcode.)

Another trick isto chain disk reads through their label blocks. That is, the label block for sector n
contains part of the disk command block for reading sector n+1, and so on.

6.1 Disk Controller mplementation

The following walk-through of an average day in the life of the standard disk controller is not intended
for the casual reader, but rather as a roadmap to ease the pain of learning the innermost workings of the
controller. If you really want to benefit from this next section, you should have a copy of the standard
disk controller microcode and logic drawings close at hand.

The disk controller consists of a modest amount of hardware and two microcode tasks (the sector task
and the word task). Communication with the emulator is via the four special main memory words, the
disk command blocks, and the interrupts described earlier. In following few paragraphs the actions of the
standard disk controller microcode are described. Occasionally it may be unclear whether the actor is
microcode or hardware. Referring to microcode listings and/or logic drawings will resolve any such
guestions.

The sector task is awakened by a sector signal from the disk. When awakened, it stores the status of the
disk and controller in the specia disk status word (kBLK+1). Inaddition, if this sector signal terminates
adisk command (for example, a data transfer during the previous sector), the status of the disk and
controller are stored in the status word of the disk command block containing the terminated command,
and the command block pointer (KBLK) isadvanced. If acommand was terminated with an error, KBLK
(DcB pointer) is set to 0 and KBLK+2 (current disk address) is set to -1. The effect of thisisto cause the
disk controller to abandon the current disk command chain and to forget where the disk armis
positioned.

Next, the sector task considers the first command on the disk command block chain (by using KBLK). If
thereis none, or if the disk unit is not ready to accept acommand, the sector task goesto sleep until the
next sector pulse. Otherwise, the sector specified in the new command is verified to be less than 13.
Then, the disk and cylinder specified in the new command are compared with those stored in KBLK+2
(current disk address), and then the new disk addressis stored in KBLK+2 and in the disk controller
hardware. Part of the new command is also stored in the hardware. 1f the comparison is unequal, a seek
isinitiated and the sector task goes to sleep until the next sector pulse.

If the comparison was equal, the SEEKOK hardware flag istested. If that is ok, then the no-transfer bit
of the disk command (bit 14 of the command word of the current disk command block) is tested to see
whether adata transfer isrequired. If not, the sector task goes to sleep such that the command will
terminate at the next sector pulse. If adatatransfer isrequired, the specified sector number and the
current disk sector number are compared. If unequal, the sector task goesto sleep until the next sector
pulse. If sector numbers are equal, awakening of the word task is enabled and the sector task goesto
sleep such that the command will terminate at the next sector pulse.

The word task awakens when aword has been processed by the disk controller hardware and the word
task has been enabled by the sector task. First, a starting delay is computed, based on whether the
current record isto be read or written. Second, control is dispatched based on the current record
number. A record length and main memory starting address are computed based on the record number.
In addition, special starting delays are computed for record number 0. The disk unit is set into the delay
mode appropriate for the operation (read/write) and the word task goes to sleep the appropriate number
of times.

46

Alto Hardware M anual Section 6: Disk and Controller 47

Then a sync word is written (if writing) or awaited (if reading). Finally the main transfer loop is entered.
Here the word count is decremented, a memory operation is started, and control is dispatched on the
transfer type. If read, the disk word is stored in memory. If write, the memory word is sent to the disk.
If check, the memory word is compared with 0. If non-zero, the disk and memory words are compared.
An unequal compare here terminates this sector’ s operation with an error immediately. 1f the memory
word is0, it isreplaced by the disk word. In any case, the checksum is updated and control returnsto
the main transfer loop. Due to the ALU functions available, the main transfer loop moves in sequence
from high to low main memory addresses.

After the word count reaches 0, the checksum is written or checked. A checksum error will be noted in
the status word, but will not terminate this sector’s operation. A finishing delay is computed, based on
the current operation, the disk unit is set into a delay mode appropriate to the operation, and the delay
happens. Finally, al disk transfers are shut off, the record number isincremented, and control returns to
the beginning of the word task.

To accomplish al this, the disk controller hardware communicates with the microprocessor in four ways:
first, by task wakeup signals for the sector and word tasks; second, by five task-specific F2's which modify
the next microinstruction address; third, by seven task-specific F1's, four of which activate bus destination
registers, and the remaining three of which provide useful pulses; and fourth, by two task-specific BS's.
The following tables describe the effects of these.

F1VALUE NAME EFFECT

178 KDATA_ The KDATA register is loaded from BUS[0-15]. Thisregister isthe
data output register to the disk, and is also used to hold the disk
address during KADR_ and seek commands. When used as a disk
address it has the format of word A in section 6.0 above.

168 KADR_ This causes the KADR register to be loaded from Bug[8-14]. This
register has the format of word C in section 6.0 above. In
addition, it causes the head address bit to be loaded from
KDATA[13].

158 KCOM_ This causes the Kcom register to be loaded from Bus[1-5]. The
KCoM register has the following interpretation:

(1) xFEROFF = 1 inhibits data transmission to/from the disk.
(2) wDINHIB = 1 prevents the disk word task from awakening.

(3) BCLKSRC = 1 takes bit clock from disk input or crystal clock,
as appropriate. BCLKSRC = 1 forces use of crystal clock.

(4) wrrFo = 0 holds the disk bit counter at -1 until a 1-bit is read.
WFFO = 1 alows the bit counter to proceed normally.

(5) SENDADR = 1 causes KDATA[4-12] and KDATA[15] to be
transmitted to disk unit as track address. SENDADR = 0 Inhibits
such transmission.

148 CLRSTAT Causes dll error latches in disk controller hardware to reset, clears
KSTAT[13].

138 INCRECNO Advances the shift registers holding the KADR register so that they
present the number and read/write/check status of the next record
to the hardware.

128 KSTAT_ KSTAT[12-15] areloaded from Bug[12-15]. (Actualy, BUS[13] is

ORed into KSTAT[13].) This enables the microcode to enter
conditions it detects into the status register.

Alto Hardware M anual

118

F2 VALUE
108
118

128

138

148

158

168
BSVALUE
3

4

STROBE

NAME
INIT
RWC

RECNO

XFRDAT

SWRNRDY

NFER
STROBON
NAME
_KSTAT

_KDATA

Section 6: Disk and Controller

Initiates adisk seek operation. The KDATA register must have
been loaded previously, and the SENDADR bit of the kKcoMMm
register previously set to 1.

EFFECT
NEXT_NEXT OR (if WDTASKACT AND WDINIT) then 378 else 0)

NEXT_NEXT OR (if current record to be written then 3 el seif
current record to be checked then 2 else 0)
NEXT_NEXT OR MAP (current record number) where
MAP(0) =0
MAP(2) = 2
MAP(2) =3
MAP(3) = 1

NEXT_NEXT OR (if current command wants data transfer then 1
ese0)

NEXT_NEXT OR (if disk not ready to accept command then 1 else
0)

NEXT_NEXT OR (if fatal error in latchesthen O else 1).
NEXT_NEXT OR (if seek strobe still on then 1 else 0).
EFFECT

The KSTAT register is placed on BUS. It has the format of a disk
status word.

The disk input dataregister is placed on BUS.

A feature of interest mostly to the diagnostic microcode writer is that if one reads the disk input data
register while writing, what should appear is delayed written data correctly aligned on word boundaries.
Thisisapainless way of checking most of the data paths in the disk controller hardware.

48

Alto Hardware M anual Section 7: Ethernet 49

7.0ETHERNET

An Ethernet is the principal means of communications between an Alto and the outside world. The
object was to design a communication system which could grow smoothly to accommodate several
buildings full of personal computers and the facilities needed for their support. The Ethernetisa
broadcast, multi-drop, packet-switching, bit serial, digital communications network: it connects up to 256
nodes, separated by as much as 1 kilometer, with a 2.94 megahits/sec channel. Control of the Ethernet is
distributed among the communicating computers to eliminate the reliability problems of an active central
controller, to avoid a bottleneck in a system rich in parallelism, and to reduce the fixed costs which make
small systems uneconomical.

The Ethernet isintended to be an efficient, low-level packet transport mechanism which gives its best
effortsto delivering packets, but it is not error free. Even when transmitted without source-detected
interference, a packet may not reach its destination without error; thus, packets are delivered only with
high probability. Stations requiring aresidual error rate lower than that provided by this bare packet
transport mechanism must follow mutually agreed upon packet protocols.

Alto Ethernets come in three pieces: the transceiver, the interface, and the microcode. The transceiver is
asmall device which taps into the passing Ether, inserting and extracting bits under the control of the
interface while disturbing the Ether aslittle as possible. The same device is used to connect all types of
Ethernet interfaces to the Ether, so the transceiver design is not specific to the Alto, and will not be
described here. The following sections describe the programming characteristics of the Alto Ethernet,
and then the implementations of the interface and microprogram.

7.1 Programming Characteristics

Programs communicate with the interface and the microcode via the emulator instruction sio and 9
reserved locationsin page 1. Word counts, buffer addresses, etc., are put in the appropriate locations and
then s10 is executed with an Ethernet command in ACO.

The specia page 1 memory locations and their functions are:

EPLOC = 600B: Post loc ation. Microcode and interface status information is posted in this
location when a command completes.

EBLOC = 6018: Interrupt b_it loc ation. The contents of this location is ORed into Nww when
acommand completes, thereby causing interrupt(s) on the channels
corresponding to the one bitsin EBLOC.

EELOC = 602B: End count loc_ation. The number of words remaining in the main memory
buffer at command completion is stored here as part of the posting
operation.

ELLOC = 603B: Load loc ation. Thislocation is used by the microcode to hold a mask of

ones shifted in from the right for generating random retransmission intervals.
ELLOC should be zeroed before starting the transmitter.

EICLOC = 604B: Input c_ount loc_ation. The emulator program should put the size of the
input buffer (in words) into this location before starting the receiver. If a
packet arrives that is longer than EICLOC, the receiver will post an Input
Buffer Overrun error status.

EIPLOC = 605B: Input p_ointer loc ation. The emulator program should put a pointer to the
beginning of the input buffer into thislocation before starting the receiver.

Alto Hardware M anual Section 7: Ethernet 50

EOCLOC = 6068B: Output c_ount loc_ation. The emulator program should put the size of the
output buffer (in words) into this location before starting the transmitter. By
convention, packets should not be substantially longer than 256 words.

EOPLOC = 607B: Output p_ointer loc ation. The emulator program should put a pointer to the
beginning of the output buffer into this location before starting the
transmitter.

EHLOC = 6108B: Host addressloc_ation. Thislocation must contain zero in the left byte and

the host address in the right byte. The microcode matches this host address
against the first byte of a passing packet to decide whether to accept it.

SI0 passes commands to the interface and returns the host address of the Alto. Commands to the
Ethernet interface are encoded in the two low order bits of AcO and have the following meaning (the
remaining bits of ACO may be interpreted by other devices and thus should be zero):

ACQ[14-15]: 0 Do nothing
1 Start the transmitter
2 Startthereceiver
3 Reset the interface and microcode.

The host address, returned in ACO[8-15] by SIO, is set by wires on the Alto backpanel. This number is
normally put in EHLOC thereby causing packets with destination addresses matching the address set with
the wires to be accepted by the receiver. For more on addressing, see below.

Upon completion of acommand, EPLOC contains the status of the microcode in the left byte and the
status of the interface in the right byte. The possible values of the microcode status byte, EPLOC[O-7],
and their meanings are:

EPLOC[0-7] = O: Input done. If the hardware status byte is 3778, the interface believes the
packet was received without error.

EPLOC[0-7] = 1 Output done. If the hardware status byte is 3778, the interface believes the
packet was sent without error. The number of collisions experienced while
sending the packet islog,(ELLOC/2+1)-1.

EPLOC[0-7] = 2: Input buffer overrun. The received packet was longer than the buffer, and
the excess words were lost. Buffer overrun causes an early exit from the
microcode input main loop, so it islikely that the crRC error and | _ncomplete
transmission bits in the hardware status byte will be set.

EPLOC[0-7] = 3: Load overflow. The transmitter experienced 16 consecutive collisions
(assuming ELLOC was zeroed before starting the transmitter) while trying to
transmit the packet described by EOPLOC and EocLOC. ELLOC[O] will be

one.
EPLOC[0-7] = 4: The command (input or output) specified a zero length buffer.
EPLOC[0-7] =5: Reset. Generally indicates that a reset command (sio with Ac0[14-15] = 3)

was issued to the interface when it wasidle or any command was issued
when it was not idle.

EPLOC[0-7] = 6: Microcode branch conditions that should never happen cause this code to be
posted if they do happen.

EPLOC[0-7] = 7-3778B: The microcode does not generate these values for status.

Note that the microcode statuses are small integers and not individual bits asin the interface status byte.
Bitsin the interface status byte, EPLOC[8-15], are low true. When zero, their meanings are:

Alto Hardware M anual Section 7: Ethernet 51

EPLOC[8-9] Unused. These should always be one.

EPLOC[10] Input data late. Theinterface did not get enough processor cycles.

EPLOC[1]] Callision.

EPLOC[12] Input CRC bad.

EPLOC[13] Input command issued. (ACO[14] in last SI0)

EPLOC[14] Output command issued. (Ac0O[15] in last SI10)

EPLOC[15] Incomplete transmission. The received packet did not end on aword
boundary.

Command completion can be detected in two ways. (1) zero EPLOC and wait for it to go non-zero, or (2)
set bitsin EBLOC corresponding to the channels on which interrupts are desired at command completion.

When a program wishes to send a packet, it must first turn off the receiver if itison. If thereceiver is
actively copying a packet into memory, the transmitter should wait for the receiver to finish (a maximum
of about 1.5 ms. assuming 250-300 word packets). The program can tell whether the receiver is actively
transferring or idle by zeroing the first word of the input buffer before starting the receiver. When the
program wants to start the transmitter, it checks the first word of the input buffer: if it is still zero, input
has not yet begun and the interface may be reset and the transmitter started with a high probability of

not missing an incoming packet. Thereis still asmall window between testing the word and starting the
transmitter when a packet can arrive and be missed, but paragraph two of this chapter warned that the
Ethernet is not error free anyway, so missing a few more packets should be harmless.

A program can determine the size of an input message (and though not too useful, the number of words
transferred to the interface by the output microcode) by subtracting the contents of EeLoc from the
original buffer count in EICLOC or EOCLOC. The microcode never modifies the buffer count or pointer
locations.

To keep the receiver listening as much of the time as possible, if EICLOC is hon-zero when an output
command isissued, the microcode will start the receiver "under’ the transmitter: while the transmitter is
counting down arandom retransmission interval after a collision, the receiver islistening. If amessage
arrives addressed to the receiver, the transmission attempt is aborted and the incoming message is
received into the buffer described by EicLOC and ElPLOC. The transmit command is not executed in this
case, and must be reissued. The microcode status byte in EPLOC will have an 'input done’ status value if
the transmission attempt was aborted by an incoming packet.

Thefirst word of all Ethernet packets must contain the address to which the packet is destined in the left
byte, and the address of the sender (or 'source’) in theright byte. Receivers examine at least the
destination byte, and in some cases (not in Altos) the source byte to determine whether to copy the
message into memory as it passes by. Address zero has special meaning to the Ethernet. Packets with
destination zero are broadcast packets, and all active receivers will receive them. If a program wishesto
receive all packets on the Ether regardless of address (useful for debugging and diagnostic programs), it
should put zero into EHLOC instead of the host number returned by sio. A host which does thisis said

to be promiscuous. Address 3778 is reserved for Ethernet booting (see section 3.4). Address 3768 is
reserved as the destination for diagnostic messages.

By convention, the second word of all Ethernet packets is the packet type. Communication protocols
using the Ethernet should set the type word to describe the protocol to which the packet belongs (for
example Pup protocol packets have 10008 in the type word). The type word is purely a software
convention; no Ethernet hardware or microcode interpretsit.

Alto Hardware M anual Section 7: Ethernet 52

7.2 Ethernet Hardware

The Ethernet hardware consists of a FIFO buffer, an output shift register and phase encoder, a clock
recovery circuit, an input shift register, a CRC register, and one microcode task. The hardware is shown
in block diagram form in Figure 8. Packets on the Ether are phase encoded and transmitter
synchronous: it is the responsibility of the receiver to decide where a packet begins (and thus establish
the phase of the data clock), separate the clock from the data, and deserialize the incoming bit stream.
The purpose of the write register is to synchronize data transfers between the input shift register whose
clock is derived from the incoming data, and the FIFO which is synchronous to the processor system
clock. Thelarge FIFO is necessary because the Ethernet task has relatively low priority, and the worst
case latency from request to task wakeup is on the order of 20 microseconds. The phase encoder uses
the system clock (one Ethernet bit timeis two clock periods).

Included in the clock recovery section is a one-shot which isretriggered by each level transition of a
passing packet. This detects the envelope of a packet and is called its’ carrier’. Ethernet phase encoders
mark the beginning of a packet by prefixing asingle 1 hit, called the sync bit, to the front of all
transmissions. The leading edge of the sync bit of a packet will trigger the carrier one-shot of alistening
receiver and establish the receiver clock phase. The sync bit is clocked into the input shift register and
recirculated every 16 bit times thereafter to mark the presence of a complete word in the register. |If
carrier drops without the sync bit at the end of the register, the transmission was incomplete, and is
flagged in the hardware status bits. When the shift register isfull, the word is transferred to the write
register where it sits until the FIFO control has synchronized its presence and there is room to accept it.

If the shift register fills up again before the word has been transferred from the write register to the FIFo,
data has been lost and the i nputd_atal ateflipflopisset.

Ethernet transmitters accumulatea16 bitc _yclic r edundancy ¢c_hecksum on the data asit is seridized, and
append it to an outgoing packet after the last dataword. Asareceiver deserializes an incoming packet it
recomputes the checksum over the data plus the appended crc word. If the resulting receiver checksum

is non-zero, the received packet is assumed to be in error, and the condition is flagged in the hardware

status byte. Sincethe cRc is of no interest to the emulator program, a wakeup request to empty data

from the FIFO is only made when it contains two or more words. This reduces the effective size of the

FIFO by one word, but insures that the cCRC will be left behind at the end of a packet.

The phase encoder is started when the microcode has decremented the countdown to zero, thereis no
carrier present, and either the FIFo isfull, or if the messageis less than 16 words long, all of it has been
transferred to the FIFO. The phase encoder will not start up while thereis carrier present. This means
that collisions can only happen because of delay in sensing carrier between widely spaced transmitters.
Collisions are detected at the transceiver by comparing the data the interface is supplying to the data
being received off the Ether. If the two are not identical, asignal is returned to the interface which sets
the collision flip flop causing a wakeup request to the microcode which resets the interface. Countdowns
are accomplished by setting aflip flop from the microcode which will cause awakeup request on the
next occurrence of SWAKMRT. This makes the grain size of countdowns about 38 microseconds.

The interface and the transceiver are connected together by three twisted pairs for signals plus two
supply voltages and ground supplied from the interface. The signals are (1) transmitted data to the

transceiver, (2) received data from the transceiver, and (3) the collision signal from the transceiver
indicating interference.

7.3 Ethernet Microcode

The Ethernet microcode uses asingle task and 2 registersin R

Alto Processor Bus

16
f Interface Buffer
16 ™ + T
160 (16 words) 16
P
Input Shifter OutputgBhifter
Write
ock register
Phase Phdse
Decoder Encoder
Read data) Write data
/ Transceiver 4
1 1
Ethernet
Figure 9 -- Ethernet Control
Microcode Status IDL Coll CRC [ICmd OCmd IT
1 1 1 1 1 1 1

o g0~ WN PP O

: Normal input completion

: Normal output completion

: Input buffer overrun

: Load overflow

: Zero length buffer

: Reset by software

: Impossible microcode condition

7-377b: Reserved

Hardware Status

Alto Hardware M anual Section 7: Ethernet

ECNTR: The number of words remaining in the buffer.
EPNTR: Points at the word prior to that next to be processed.

The task and R registers are shared by input and output so that at any time they are (1) unused, (2)
transmitting a packet, or (3) receiving a packet. When an Ethernet sio isissued while the Ethernet
microcode is reset, the code dispatches on whether it is an input, output, or reset command.

Each Ethernet sio has aresult which is posted when the command completes. The state of the
microcode and hardware at the time of the post is deposited in EPLOC, the contents of ECNTR is
deposited in EELOC, and the contents of EBLOC is ORed into Nww. Note that resetting the interface with
EBLOC non-zero will result in an interrupt.

An input command (sio with Ac0[14:15] = 2) causes the microcode to start the input hardware searching
for the start of a packet and then block. When a packet beginsto arrive, the hardware wakes up the
microcode which compares the packet’ s address against the filtering instructions left in EHLOC by the
emulator program. The packet will be accepted if any of three conditionsistrue: (1) If EHLOC is zero,
the receiver is said to be promiscuous - all packets are accepted; (2) if the destination address (left byte of
the first word) of the packet is zero, the packet is a broadcast packet - all receivers accept broadcast
packets; or (3) if the destination byte matches the right byte of EHLOC - the packet was sent to that
specific host. If none of these conditions is met, the packet is rejected by restarting the receiver, which
causesit to ignore the current packet and to hunt for the beginning of the next packet. If the packet is
accepted, the microcode enters the input main loop.

The input main loop first loads ECNTR and EPNTR from EiICLOC and EIPLOC. Note that EIcLOC and
EIPLOC are not read until the receiver is committed to transferring data to memory, which may be long
after the receiver was started; therefore, these locations should not be disturbed while the receiver is on.
The main loop repeatedly counts down the buffer size in ECNTR and advances the buffer pointer in
EPNTR depositing packet words until either the hardware says that the packet has ended or the buffer
overflows; in either case, the input operation terminates and posts.

An output command (sio with Ac0[14-15] = 1) causes the microcode to compute a random
retransmission interval, wait that long, and then start transmitting the packet described by EocLoc and
EOPLOC. The retransmission interval is computed by ANDing the contents of ELLOC with the contents of
R37, the low part of thereal time clock (ELLOC is nhot modified). Then aone bit is left shifted into

ELLOC and the high order bit of the result istested. If the high order bit is on, the transmission attempt

is aborted with a’load overflow’ microcode status. The above process is repeated each time the
transmitter detects a collision while transmitting the packet. If ELLOC started out zero, each collision will
double the value of ELLOC, thus doubling the mean of the random number generated by ANDINg ELLOC
with the real time clock. If 16 consecutive collisions occur without successfully transmitting the packet,
the attempt is aborted.

The retransmission interval is decremented every 38.08 microseconds (the memory refresh task wakeup
signal is used for this) until it reaches zero, at which time ECNTR and EPNTR are loaded from EOCLOC
and eoPLOC and the transmitter part of the interface is started. This may occur long after the emulator
program issued the output command, so EocLoc and EoPLOC should not be changed while the
transmitter ison. Note that the mean of the first retransmission interval will be zero, so the first
transmission attempt will begin immediately. Actual transmission of the packet does not begin until the
FIFO has been filled by the output main loop (or if the packet is smaller than the FIFo, until al of the
packet isin the FIFO) and there is silence on the Ether. If EICLOC is non zero while the transmitter is
counting down aretransmission interval, the receiver is turned on and if a packet arrives with an
acceptable address, the transmission attempt is forgotten and the microcode enters the input main loop as
if an input command had been issued.

The output main loop repeatedly counts down the packet length in ECNTR and advances the addressin
EPNTR taking words from the output buffer and putting them in the FIFO until either the main memory
buffer is emptied or a hardware condition aborts the operation. The output main loop is awakened for a

53

Alto Hardware M anual Section 7: Ethernet 54

data word once every 5.44 microseconds on the average. The microcode signals the hardware when the
main memory buffer is empty and waits for the hardware to terminate; it then posts status.

A reset command (S0 with Ac0[14-15] = 3) will always bring the interface back to areset state. If the
receiver was on, it is stopped even if a packet was pouring into memory. If the transmitter wason, itis
stopped, evenif it was in the middle of transmitting a packet (the result to the receiver of the interrupted
packet will almost certainly be an incomplete transmission and incorrect CRC). Status will immediately
be posted in EPLOC: the microcode will post the reset status (5) in the microcode status byte, and the
hardware will post the conditions at the time of the reset in the hardware status byte. The contents of
the ECNTR R register will be deposited in EELOC, and the contents of EBLOC will be ored into Nww,
possibly causing interrupts. After doing this, the interface and microcode are reset and ready for another
command.

The task specific microcode functions for the Ethernet interface are summarized below.

EIDFCT * Bs=4 Input D_ataF unction. Gates the contents of the FIFO to BUS[0-15], and
increments the read pointer at the end of the cycle.

EILFCT * F1=13B Input L ook F unction. Gates the contents of the FIFO to BUS[0-15] but does
not increment the read pointer.

EPFCT F1=148B Post F unction. Gatesinterface status to BUS[8-15]. Resets the interface at
the end of the cycle.

EWFCT F1=158 Countdown W__akeup F_unction. Setsaflip flop in the interface that will

cause awakeup to the Ether task on the next tick of SWAKMRT. This
function must be issued in the instruction after aTASK. The resulting
wakeup is cleared when the Ether task next runs.

EODFCT F2=108 Output D_ata F unction. Loads the FIFO from BUs[0-15], then increments the
write pointer at the end of the cycle.

EOSFCT F2=11B Output S tart F_unction. Setsthe oBusy flip flop in the interface, starting
data wakeups to fill the FIFo for output. When the FIFo isfull, or EEFct has
been issued, the interface will wait for silence on the Ether and begin
transmitting.

ERBFCT F2=128 Reset B ranch F_unction. This command dispatch function merges the IcMD
and ocmD flip flops, into NEXT[6-7]. These flip flops are the means of
communication between the emulator task and the Ethernet task. The
emulator task sets them from Bus[14-15] with the STARTF function, causing
the Ethernet task to wakeup, dispatch on them and then reset them with

EPFCT.

EEFCT F2=138B End of transmission F _unction. Thisfunction isissued when all of the main
memory output buffer has been transferred to the FIFO. EEFCT disables
further data wakeups.

EBFCT F2=14B Branch F_unction. orsaoneinto NEXT[7] if an input data late is detected,

or an SIo with ACO[14:15] non-zero isissued, or if the transmitter or receiver
goes done. ORsaoneinto NEXT[6] if acollision is detected.

ECBFCT F2=158B Countdown B_ranch F_unction. ORsaoneinto NEXT[7] if the FIFO is not
empty.
EISFCT F2=16B Input S tart F unction. Setsthe1Busy flip flop in the interface, causing it to

hunt for the beginning of a packet: silence on the Ether followed by a
transition. When the interface has collected two words, it will begin
generating data wakeups to the microcode.

Alto Hardware M anual Section 7: Ethernet

*

These functions have a peculiar timing restriction associated with them. The microinstruction that
executes one of them must stop the clock for one cycle. On Alto |, the microprogrammer must do
this using memory timing (i.e., by referencing MD in the same microinstruction, during the third or
fourth cycle of amemory reference). On Alto 1, the hardware automatically stops the clock for
one cycle when necessary; however, due to adesign error, the instruction following the one
specifying EIDFCT or EILFCT is occasionally stopped instead. Consequently, the programmer must
not permit atask switch to occur between these two microinstructions, nor start amemory
reference in the following microinstruction.

55

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers

8.0 CONTROL RAM, ROM, AND SREGISTERS

In addition to the 1k microinstruction ROM containing the standard emulator and 1/0 microcode, an Alto
may contain additional microinstruction memory in the form of either ROM or RAM; these are
accompanied by additional registers, called s registers, whose purpose and operation are similar to the
standard R registers.

Severa different configurations exist, depending on the Alto vintage:

1K RAM All Altos have at least 1K of read/write microinstruction memory and one bank of 31 s
registers. (At onetime these were optional on Alto |, but they are now considered standard.)

2K ROM Certain Alto lls have 2k of read-only microinstruction memory rather than 1k. Thefirst 1k
contain the standard emulator and 1/0 microcode, and the second 1k may be programmed
with additional microcode. This configuration includes the 1k RAM and 31 Sregisters
described previoudly.

3K RAM Certain other Alto 11s have 3k of read/write microinstruction memory and 8 banks of 31 s
registers.

8.1 RAM-Related Tasks

The control RAM and s registers perform data manipulation (as distinct from microcode fetching)
functionsin response to certain values of the F1 and Bs fields of the microinstruction. Not all tasks are
likely to be interested in these functions. Moreover, not al tasks will have the appropriate values of the
F1 and Bs fields uncommitted. A RAM-related task is defined as one during whose execution the control
RAM card will respond to F1 and Bs fields of microinstructions. The standard Alto iswired so that the
emulator task isthe only RAM-related task. At most two other tasks can be made RAM-related by a
simple backpanel wiring change.

8.2 Processor Busand ALU Interface

The Alto’s ALU output and processor bus are each 16 bits wide and its microinstruction busis 32 bits
wide, so loading the control RAM from the ALU output and reading the control RAM (or ROM) onto the
processor busis dightly clumsy. It isdone by using the RAM-related F1's WRTRAM and RDRAM (see
Appendix A).

For both reading and writing, the control RAM addressis specified by the control RAM address register
(see Figure 2), which isloaded from the ALU output whenever T isloaded from its source. Thisload
may take place as |ate as the microinstruction in which WRTRAM or RDRAM is asserted. The bits of the
ALU output have the following significance as a control RAM address:

BIT USE
0-1 Ignored (should be zero).

2-3 BANKSEL - Selects RAM bank in 3k RAM configuration; ignored when operating on
ROM.
0 RAMO
1 RrAM1
2 RAM2
3 Undefined

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers 57

4 RAM/ROM
0 Means operate on the control RAM.
1 Means operate on the control ROM. (This doesn’t quite work the way you might
think. See section 8.8 for details.)

5 HALFSEL - Ignored when writing
0 Meansread out the low-order 16-bits of the addressed word.
1 Means read out the high-order 16-bits of the addressed word.

6-15 Word address (0-1023).

Since it is expected that reading the control RAM will be arelatively infrequent operation, asingle
assertion of RDRAM reads out only one half of a 32-bit control RAM (or Rom) word onto the processor
bus. To read out both halves, the control RAM address register must be loaded twice and RDRAM

invoked twice. Dataresulting from RDRAM iS AND’ ed onto the processor bus during the microinstruction
following that in which the RDRAM was asserted.

In contrast, it is expected that writing into the control RaAM will occur frequently. Therefore asingle
application of WRTRAM writes both halves of a control RAM word at once. The M register contents (see
section 8.7) after the microinstruction containing the WRTRAM will be written into the high-order half of
the addressed control RAM word. The ALU output during the microinstruction following the WRTRAM
will be written into the low-order half. This protocol mates well with doubleword main memory reads.

8.3 Microinstruction Bus I nterface

The correspondence of ALU output bits with microinstruction fields appears in the following table:

High/Low Order Bit of ALU Meaning Vduein
Halfword Output Example

H 0-4 R Register Select 0

H 5-8 ALU Function Select 0

H 9-11 Bus Data Source 5

H 12-15* Function 1 2

L 0-3* Function 2 0

L 4 Load T 0

L 5* Load L 1

L 6-15 Next micro address 3258

Fields denoted by * are represented with their high-order bit inverted; thisis an artifact of
hardware microinstruction decoding.

As an example, consider the representation of the microinstruction
L_MD, TASK, :LOCA;

where LOCA is3258. The valuesfor the various microinstruction fields are listed in the table above.
After complementing the appropriate high-order bits and concatenating, we see that the microinstruction
above would be represented as 1328 in its high-order halfword and 1003258 in its low-order halfword.

8.4 Microinstruction Memory Banks

An alert reader will by now have noticed that the NEXT field of each microinstruction provides a 10-bit
address, and that more bits are required to fully address the microinstruction memory. The MI memory
isdivided into up to four banks of 1024 instructions each:

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers

NAME WHAT
MI ROMO The standard microcode ROM.

MI ROM1 Second bank of ROM in the 2k ROM configuration.
MI RAMO The standard microcode writeable RAM.

MI RAM1 Second bank of RAM in the 3k RAM configuration.
MI RAM2 Third bank of RAM in the 3k RAM configuration.

Switching among banks is controlled in two ways: (1) a RaM related task already running may "switch
banks, and (2) it possible to initiate a task in either ROMO0 or RAMO.

Bank switching is accomplished with a special transfer mechanism, available only to the emulator task, in
the form of SwMODE, arRAM-related F1. sSwMODE will switch the bank of the running task, taking effect
after the microinstruction following that in which the SwMODE appears. In other words, the emulator
task swMODE behaves much like an address modifier. Tasks other than the emulator cannot switch
banks. The effect of sSwmMODE depends on the ROM/RAM configuration, the bank in which the task is
currently executing, and the value of NEXT in the instruction following the one that asserts SWMODE.

In the 1k RAM configuration (neither the 2k ROM nor the 3k RAM option installed):

If currently go to NEXT in
executing in

ROMO RAMO
RAMO ROMO

In the 2k ROM configuration (which includes 1k of RAM):

If currently and NEXT[1]=0 then ese
executing in gOtONEXT in gotONEXT in
ROMO RAMO ROM1
ROM1 ROMO RAMO
RAMO ROMO ROM1

In the 3k RAM configuration:

If currently NEXT[1]=0 NEXT[1]=1
executing in NEXT[2]=0 NEXT[2]=1 NEXT[2]=0 NEXT[2]=1
ROMO RAMO RAM2 RAM1 RAMO
RAMO ROMO RAM2 RAM1 RAM1
RAM1 ROMO RAM2 RAMO RAMO
RAM2 ROMO RAM1 RAMO RAMO

If the table above determines that control is to be transferred to the RAM, and the RAM is not installed,
control remains in the bank in which the task is currently executing.

Many Alto Ils have the 2k ROM capability but contain nothing in ROM1. In these Altos, the SwmMODE
operation is normally configured so that it behaves asif RoM1 didn't exist (i.e., according to the first
table rather than the second). Thisis determined by the chip in position 51 on the control board. If itis
labelled sw2k then ROM1 exists, but if swik then it does not. The alternate chip is kept in unused
socket 76.

SWMODE is actually defined in all RAM-related tasks, not just the emulator; however, it does not work
correctly in tasks other than the emulator in Altos with the 2k ROM or 3k RAM configuration.

Each of the 16 micro-tasks may be started either in ROMo or in RAMO when a hardware reset
("bootstrap") operation is performed, regardless of whether the task is RaM-related. A 16-bit "reset mode

58

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers 59

register" is used to determine which tasks will start in Romo and which will start in RAM0. The emulator
F1 RMR_ causes the reset mode register to be loaded from the processor bus. The 16 bits of the
processor bus correspond to the 16 Alto tasksin the following way: the low order bit of the processor
bus specifies the initial mode of task 0, the lowest priority task (emulator), and the high-order bit of the
bus specifies the initial mode of task 15, the highest priority task (recall that task i starts at location i; the
reset mode register determines only which microinstruction bank will be used at the outset). A task will
commence in ROMO if its associated bit in the reset mode register contains the value 1; otherwise it will
start in RAMO. Upon initial power-up of the Alto, and after each reset operation, the reset mode register
isautomatically set to all ones, corresponding to starting all tasksin ROMo.

8.5 Standard Emulator Access

The standard emulator includes three instructions allowing basic access to the control RAM. More
sophisticated access may be implemented by using the basic access primitives to write other access
microcode into the control RAM and then transferring control to that microcode.

RDRAM (61011B) Read from Control RAM:
Reads the control RAM (or ROM) halfword addressed by Ac1 into Aco. The microcodeis:

T_AC1, RDRAM;
L_ALLONES, (AND’ed with control RAM data)
ACO_L, :START;

Note: In Alto Ilsrunning microcode version 2, thisinstruction does not work reliably if the
Ethernet interface is running.

WRTRAM (61012B) Write into Control RAM:

Writes Aco into the high-order half and Ac3 into the low-order half of the control RaM word
addressed by Ac1. The microcodeis:

T_ACL;
L_ACO, WRTRAM; (Thisloads the M register)
L_ACS;
:START,

JMPRAM (610108) Jump to Control RAM:

This emulator instruction provides a software interface to the SWMODE instruction so that the
emulator task may enter another bank in RAM or ROM. The next emulator microinstruction will
be determined from the value in Ac1 (mod 1024) -- see the discussion of bank switching in
section 8.4. Note that the instruction name (jump to RAM) is misleading, as SMMODE may jump to
other placesaswell. The microcode for IMPRAM is:

T_AC1, BUS, SWMODE;
:NOVEM; (NOVEM =0)

This operation is fraught with peril. If donein error it is the one of the few emulator
instructions which can cause the machine to plunge completely off the deep end. Although
clever coders can use IMPRAM to determine whether or not a control RAM isinstalled, they are
better advised to make this determination using WRTRAM and RDRAM (see section 9.2.4).

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers 60

8.6 Interpretation of Emulator Traps

All unused opcodes except 774008-777778 (which is used by Swat, the Alto debugger) and 61xxxB, where
xxX is between 0 and 3778, transfer to microlocation RAMTRAP with the instruction in L, the instruction
cycled by 8 bitsin the R-register XREG, and the emulator’ s R-register PC counted one beyond the

trapping instruction:

RAMTRAP. SWMODE, :TRAP;

TRAP: .., TRAPL

Theresult of thisisthat if your machine has a control RAM, these instructions will cause control to enter
it at alocation which is equal to TRAPL in the RoM microcode. If ho RAM is present, the unimplemented
opcode will be handled as described in Section 3.3.

8.7 M and S Registers

The control RAM card also includes an M register and 31 sregisters. If the 3k RAM option isinstalled,
there are 8 banks of 31 s registers (see below). The M register isthe analog of the basic Alto’s L register.
It provides data for the s registers, which are analogous to the basic Alto’sR registers. These additional
registers are provided to ease the tight constraint on R register availability which might limit the utility of
the control RAM.

The similarities between the M and L registers and between the R and S registers are striking. Both m
and L are loaded from the output of the ALU, and only when the Load L bit of the microinstruction is
active. Rregistersareloaded from L, and s registers are loaded from M. Both R and s registers output
data onto the processor bus. Both R and s registers are addressed by the RSELECT field of the
microinstruction. (Thus the same caveats which apply to the use of R37 apply to s37 (see section 2.3 f).)
Loading and reading of both R and s registers are controlled by the Bs field of the microinstruction.

Nevertheless there are considerable differences. To begin with, the M and s registers are active only
when aRAM-related task is executing. This means, for example, that in the highest-priority RAM-related
task it is not necessary to save the value of M across a TASK, since no higher-priority task can change the
value of M. (It isperilousto take advantage of this "feature”, however, since several non-standard Alto
peripherals make use of RAM-related tasks.)

Unlike the data path from the L register to the R registers, the data path from the M register to the s
registers contains no shifter. When an s register is being loaded from M, the processor bus receives an
undefined value rather than being set to zero. The emulator-specific functions ACSOURCE and ACDEST
have no effect on s register addressing. And finally, when reading data from the s registers onto the
processor bus, the RSELECT value 0 causes the current value of the M register to appear on the bus.
(This explains why there are only 31 useful s registers.)

For the purposes of writing microcode, the s registers are assigned humbers 408 through 778, and appear
to the microassembler asif they simply extended the R register address space. Hence, for example, the m
register is defined as R40.

In the 3k RAM configuration, there are 8 banks of 31 sregistersrather than only asingle one. Each
RAM-related task has associated with it a 3-bit register bank number that determines which bank is
referenced when a microinstriction specifies that an s register be read or loaded. Thereis an emulator F1
called EsrB_ and aRAM-related Fi1 called SRB_ that sets the register bank number for the currently-
executing task from Bus[12-14]. Itisillegal to execute ESRB_ or SRB_ in the last cycle before atask
switch, i.e., in the microinstruction after aTASK is executed.

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers

Note that the function code is different for emulator and non-emulator tasks: ESRB_isF1=15 and is
defined only in the emulator task, while SRB_ is F1=13 and is defined in all RAM-related tasks besides
the emulator. (F1=13 corresponds to RMR_ in the emulator. In Altos without the 3k RAM option,
F1=13 performs RMR_ in all RAM-related tasks, including the emulator.)

The register bank numbers are all reset to zero by areset (bootstrap) operation, thereby causing the Alto
to behave the same as a standard Alto with asingle bank of s registers shared among all RAM-related
tasks.

8.8 Restrictions and Caveats

1. Both RDRAM and WRTRAM cause the microprocessor’ s system clock to stop for one cycle. This may
yield unspecified results if the system clock is also stopped for some other reason (e.g., waiting for
memory data). Asageneral rule, the system clock should run without hesitation during the
microinstruction following a RDRAM or WRTRAM, except for the effect of the RDRAM or WRTRAM itself.
On Alto |, there is an additional timing problem which manifests itself in some machines, for example, in
the following microcode sequence:

MAR_FOO; Starts memory reference

T_FIE; L oads the control RAM address register
L_MD, WRTRAM; Save away the high-order word in m
L_MD; Completes the write into the RAM

What happens s that the last instruction suspends the system clock for one microinstruction, and some
Alto | memories cannot keep the memory data good for two microinstruction times, so a parity error may
occur. Thedataisactualy stored in the RAM at the end of the first microinstruction time, so thereis
probably no error in the data even if a parity interrupt subsequently occurs. This"phantom" parity error
may be averted by the following code, which takes three more microinstruction times, but does not
invoke the horrendous microcode overhead of parity error recording:

MAR_FOO; Starts memory reference

NOP; Required for memory timing

L_MD; Save away the low-order word

T_MD; Save away the high-order word
TEMP_L,L_T;

T_FIE, WRTRAM; Loads the address register, starts the write.
L_TEMP; Complete the write into the RAM

2. Unlike the control RAM, which can be addressed from 2 places, the control ROM gets its address only
from the MpC RAM. Conseguently, to read ROM location X, the instruction following the one with
F1=128B (RDRAM) must reside at location (x mod 1024). Therefore, you'll probably want to put the
"reading” codein the RAM:

T_AC1, RDRAM, :X; Only Ac1[4-5] arerelevant
X: L_ALLONES; Here the read takes place
ACO_L, ...

Note also that only Romo can be read by these means. There is no known way to read ROM1.

3. Some Alto I's have been observed not to evaluate the Bus=0 function correctly when reading an s-
register during the first microinstruction after atask switch. The same operation in other than the first
microinstruction causes no difficulty.

61

Alto Hardware M anual Section 9: Nuts and Boltsfor the Microcoder 62

9.0 NUTSAND BOLTSFOR THE MICROCODER

9.1 Standard Microcode Conventions

The microassembler which assembles microcode for the Alto is called Mu. By convention, microcode
source files have the extension .mu, and binary files have the extension .MB. Standard Alto | ROM
microcode versions will be called AltoCodex.mu; those for Alto 11 will be called AltollCodex.mu. A
microcode source file can be divided into three largely separable pieces: the language definitions, which
tell Mu what names will be used for what octal values of what microcode fields; the constant definitions,
which declare all constants that may later be referenced, and which cause the constant memory to be laid
out; and the register declarations, microinstruction label declarations, and microinstructions.

In order for microprograms written to execute in the RAM to be compatible with those in the RoMm, at a
minimum the constants assumed by the RAM microcode must be a subset of those declared by the Rom
microcode, and the subset must reside in the same addresses. As a practical matter, one should preface
one's RAM microcode by the same constant definitions which were used in the assembly of one’s Rom
microcode. In order to facilitate and encourage this compatibility, the file AltoConstsxMu will be
maintained (the x corresponding to the latest AltoCodex) containing definitions and constants for both
Alto | and Alto Il. These can be logically incorporated into other microcode assemblies viathe
"include" feature of Mu (#AltoConstsx.MU;).

If one or more microcode tasks pass control back and forth between RoM and RAM, it becomes necessary
to associate addresses with microinstruction labels. It is possible to do this completely generally, based
on the microcode version number. A more limited solution is simply to fix the addresses of certain
useful labels. The following addresses are guaranteed in al standard Alto I microcode versions after 20,
and all standard Alto Il microcode versions (and are included in AltoConstsx.MU):

ADDRESS LABEL SEMANTICS

208 START Beginning of emulator’ s main loop; starts a new emulated
instruction.

378 TRAPL RAM location to which unfamiliar traps are sent; ROM location
which implements trap sequence.

228 RAMCY CX Fast cyclic shift subroutine.

1058 BLT Block transfer subroutine.

1068 BLKS Block store subroutine.

1208 MUL Multiply subroutine.

1218 DIV Divide subroutine.

1248 BITBLT BITBLT subroutine.

1608 LO Cyclic shift dispatch table.

7778 SWRET In ROM1 only -- see below

A standard convention requires that location SWRET in RoM1 have the following microcode:

SWRET: SWMODE;
:START;

This sequence enables a program to discover whether ROM1 exists, i.e., whether the Alto has the 2k
PROM option (see section 9.2.4).

Alto Hardware M anual Section 9: Nuts and Boltsfor the Microcoder

9.2 Microcode Techniques Which Need Not Be Rediscovered

For the most part, since the Alto is such a simple machine, writing Alto microcode is a straightforward
exercisein rule-following. However, during the course of writing the few-odd thousand microinstructions
which have ever been written by anybody for the Alto, afew microcoding techniques have emerged as
particularly ingenious or useful or both. They are recorded here for posterity.

The beginning microcoder is advised to acquire a copy of the standard microcode (AltoCodex.mMu), and
to study it carefully in conjunction with this manual. The knack comes easily.

9.2.1 Microcode Subroutines

Y ou have probably aready noticed that that the Alto hardware does not provide an easy way of doing
microcode-level subroutine calls and returns. Several subroutine-call techniques have evolved. Two of
these are used for RAM-to-ROM subroutine calls, and these will be presented first.

PC CALL (used with BLT, BLKS, MUL, DIV, BITBLT)

This call takes advantage of the assumption that nobody in his right mind would want the
emulator to execute in the non-memory 1/0 areafrom 1770008 to 1777778. Therefore when one
of these ROM subroutines terminates, the R-register PC is examined. If it is outside the range
1770008-1777778, then control is passed to the beginning of the emulator’s main loop in the
ROM. Otherwise, control is passed to location PC AND 7778 in RAM or ROM1. The bank
dispatched to is determined by the sSwMODE rules described in section 8.4.

Warning: Some of these ROM subroutines modify PC during execution. If BLT or BLKS or
BITBLT isterminated by an interrupt condition, PC is decremented by 1 so that the instruction
can be resumed later. If aDIV is successful, PC isincremented by 1 to cause a skip.

REGISTER CALL (used with RAMCYCX)

This call uses an R-register, in this case CYRET (R-register 5), to dispatch into atable of successor
instructions. The cyclic shift subroutine, for example, is called from six placesin the Rom. Each
of these places sets CYRET to the index of its successor instruction in the return dispatch table [O-
5], and then dispatches into the cycle table beginning at Lo. The successor corresponding to
RAMCYCX dispatchesinto RAM or ROM1 using the low-order 10 bits of the Pc register, according
to the sSwMODE rules described in section 8.4.

IRCALLS
These calls use the emulator’s IR register in various ways: some straightforward and some
devious. The main advantages of IR calls are that

1) severad levelsof return can be encoded into a single number, because it isfairly easy
to dispatch on various parts of IR, and

2) unlike R-registers, IR can be loaded in one microinstruction.
The most straightforward use of IR is dispatching on its low-order 8 bits using the DIsP bus

source. Since DISP is a bus source >3, a constant may be "and-ed" onto the bus with DISP,
allowing one to dispatch on sub-fields of DIsP.

Alto Hardware M anual Section 9: Nuts and Boltsfor the Microcoder

The most devious use of IR involves a group of constants labeled sr0 to sr12, sr14 to srl7, and
sr20 to sr37 (as you might suspect, the numbers on these constant names are octal). If the
constant sri has been loaded into IR, then the following code will cause control to transfer to
location FOO OR i:

IDISP; (see section 3.5)
:FOO;

The statement above isonly true if i islessthan 20B; otherwise an additional dispatch on the
DIsP field of IR isrequired to get the desired effect:

FOO13: SINK_DISP, BUS;
:FOO20;

(This explains why thereis no sr13. Any of sr20-sr37 will carry control to the 13Bth entry in
FOO's dispatch table, where an additional level of dispatch can be used to differentiate among
them if necessary. Y ou may be wondering what is special about 13B. Y ou arein good company.)

9.2.2 The Silent Boot

Many of the effects of a hardware "reset" operation (invoked by the boot button, or Bus[0]=1 in
conjunction with the emulator-specific F1 STARTF (178)) can be faithfully simulated by emulated software.
At least two important ones cannot. A reset operation is the only way of moving non-rRAM-related tasks
back and forth between RoM0 and RAMO, and the only way of guaranteeing that all tasks are initialized.
However, the time required for areset operation is not necessarily longer than afew microseconds. On
both Alto Isand Alto Ils areset operation does not alter the contents of the Alto’sR or Sregisters, its
microinstruction RAM, or its main memory. Therefore if these memories contain appropriate contents it
isnot really necessary to go through the full disk or Ethernet bootstrap load sequence, since the major
purpose of those sequencesisto initialize these memories with desired contents.

The"silent boot" consists first of getting the desired contents into the RAM and main memory. RAMO
should contain an emulator task (beginning with address 0) which, for example, simply jumps into the
main loop of the RoM emulator code, skipping al the bootstrap code. For example:

NOVEM: SWMODE; (RAMO location 0, task O’ s reset location,)
:START; (to ROMO location 20B)

Second, the reset mode register should be set so that the reset operation will begin execution of the
emulator task in RAMO, and the other tasks wherever they are desired. Finally, the reset operation is
initiated, the emulator hiccoughs momentarily into RAMO, and then proceeds in RoMo as if nothing had
happened.

9.2.3 Debugging the Emulator

As someday it may happen that a bug must be found in a new version of the emulator, microcodes
should be aware of anicetrick. Suppose you have an Alto with aworking emulator in its RoM, and
load the suspect emulator into the RAM. Y our courage leads you to execute a IMPRAM with AC1=208
(START), and hope that the new emulator behaves. But alas, the machine divesinto oblivion. Now the
trick applies. before jumping into theRAM version, plant a JMPRAM (with AC1=208) somewherein the
Nova code that you know will be executed. Now go to the RAM with the horrid IMPRAM. If the suspect
emulator has not died by the time it executes the (MPRAM you planted, control will return to the benign
ROM. This method, together with the obvious search technique, may locate an offending emulator
instruction.

Alto Hardware M anual Section 9: Nuts and Boltsfor the Microcoder 65

9.2.4 How to tell if extended ROM or RAM exists

A standard convention assures that location 7778 in ROM1, if it exists, contains the code:

SWRET: SWMODE;
:START;

First, we store the following snatch of code in RAMO, with INRAM located at location 7778:

INRAM: L_ACO+1, SWMODE;
ACO_L, :START;

Now we store 0 in Aco, and use the IMPRAM emulator instruction to branch to location 7778. Thiswill
cause either the SWRET or INRAM code to be executed; in any case, the emulator instruction following the
JMPRAM will eventually be executed. If Aco has been set to 1, RoM1 does not exist; otherwise ROM1 does
exist.

To determine whether the 3k RAM option is present, use WRTRAM to write different valuesinto
corresponding locations in two different RAM banks, then use RDRAM to read back the first location
written. If the 3k RAM option is present, the location will still contain the value written into it; if the
option is absent, it will have been clobbered by the value intended for the second RAM bank.

9.2.5 RAM Utility Area

It sometimes happens that a small piece of microcode must be loaded into the RAM so that the emulator
can execute it by doing a IMPRAM to it; it will then return to the emulator. For example, such a piece
of codeisrequired in order to set the reset mode register. By convention, we reserve a utility area of
RAMO for this purpose. The normal procedure is to save the contents of this area (using RDRAM), store
the piece of code that isto be executed (using WRTRAM), execute the code (using (MPRAM), and then
restore the original contents. Writers of microcode should avoid placing code in the utility areathat is
not part of the emulator task, asit may be temporarily altered for these utility operations.

The normal utility areais 7748 through 10038 inclusive. The aert reader will recognize that IMPRAM can
successfully transfer into this areain RAM0 when coming from Romo (locations 10008-1003B are
accessible) or from RoM1 (locations 774B-7778 are accessible). A program will therefore need to know
where it is executing (ROM0 or ROM1) and use an appropriate entry point to the utility area.

9.2.6 Other Information

Correct operation of most Alto peripherals depends vitally on their tasks receiving adequate service. This
in turn depends on two things:

1. A task must have sufficient priority to gain however many cyclesit needs for service, at the
expense of lower-priority tasks. The choice of priority must be made carefully when the
interface is designed.

2. Other tasks at the same and lower priorities must be well-behaved. In particular, they must
perform task switches no further apart than the maximum latency permitted for the task in
question.

Alto Hardware M anual Section 9: Nuts and Boltsfor the Microcoder 66

It is believed that the standard Alto peripheral most sensitive to task latency is the Diablo disk controller
when connected to aModel 44 disk drive. Thisis due to the fact that the datarateis relatively high and
the controller has only 16 bits of buffering.

It has been determined empirically that task latency greater than 20 microinstruction times causes Diablo
Model 44 disks to encounter data-late errors. Therefore, when writing microprograms, it is essential that
you issue aTASK at least once every 20 microinstructions (preferably once every 15). When counting
microinstruction times, do not forget to include the cycles during which the processor is suspended due
to memory references.

Alto Hardware M anual

APPENDIX A - MICROINSTRUCTION SUMMARY

FIELDS: 0-4 RSELECT
5-8 ALUF
9-11 BS
12-15 F1*
16-19 F2*
20 LOADT
21 LOADL & M*
22-31 NEXT

*High-order bit complemented by RDRAM and WRTRAM.
All subsequent numbers on this page are in octal.

ALUF:
0: BUS 4: BUSXORT 10: BUST 14: BUST*
LT 5: BUS+1* 11: BUST-1 15: BUSANDNOT T
2: BUSORT* 6: BUS-1* 12: BUSH+T+1* 16: UNDEFINED
3: BUSANDT 7: BUSHT 13: BUS+SKIP* 17: UNDEFINED
*Loads T from ALU output
BUS SOURCE (standard):
0: _RLOCATION 4: (task-specific)
1: RLOCATION_ 5. _MD
2: None (BUS -1) 6: _MOUSE
3: (task-specific) 7. _DISP
F1 (standard):
0: - 4: LLSH1
1. MAR_ 5 _LRSH1
2: TASK 6: _LLCYS8
3: BLOCK 7: _CONSTANT
F2 (standard):
0: - 4. BUS
1. BUS=0 5: ALUCY
2: SH<O0 6. MD_
3 SH=0 7: _CONSTANT
BUS SOURCE (task-specific):
0 4,16 7 RAM
CPU KSECKWD ETHER Related
3: _SLOCATION _KSTAT - _SLOCATION
4: SLOCATION_ _KDATA EIDFCT SLOCATION_
F1 (task-specific):
0 4,16 7 11 12 13 14
CPU KSEC,KWD ETHER DWT CURT DHT DVT
10. SWMODE - - - - - -
11: WRTRAM STROBE - - - - -
122 RDRAM KSTAT_ - - - - -
13 RMR_ INCRECNO ELFCT - - - -
14 - CLRSTAT EPFCT - - - -
15. ESRB_ KCOMM_ EWFCT - - - -
16: RSNF KADR_ - - - - -
17. STARTF KDATA_ - - - - -
F2 (task-specific):
0 4,16 7 11 12 13 14
CPU KSEC,KWD ETHER DWT CURT DHT DVT
10: BUSODD INIT EODFCT DDR_ XPREG_ EVENFIELD EVENFIELD
11: MAGIC RWC EOSFCT - CSR_ SETMODE -
122 DNS_ RECNO ERBFCT - - - -
13: ACDEST XFRDAT EEFCT - - - -
14 IR_ SWRNRDY EBFCT - - - -
15. IDISP NFER ECBFCT - - - -
16: ACSOURCE STROBON EISFCT - - - -

17 - - - - - - -

67

RAM
Related
(SWMODE)
WRTRAM
RDRAM
SRB_

Alto Hardware M anual 68

APPENDIX B - STANDARD RESERVED MEMORY LOCATIONS

All numbersarein octal.

Location Name Contents

Page 0:

0-17 Set to 77400B by OS (Swat)

Page 1:

400-412 Used by standard bootstrap operation

420 DASTART Display list header (Std. Microcode)

421 - Display vertical field interrupt bitword (Std. Microcode)
422 ITQUAN Interval timer stored quantity (Std. Microcode)

423 ITBITS Interval timer bitword (Std. Microcode)

424 MOUSEX Mouse X coordinate (Std. Microcode)

425 MOUSEY Mouse Y coordinate (Std. Microcode)

426 CURSORX Cursor X coordinate (Std. Microcode)

427 CURSORY Cursor Y coordinate (Std. Microcode)

430 RTC Real Time Clock (Std. Microcode)

431-450 CURMAP Cursor bitmap (Std. Microcode)

452 ww Interrupt wakeups waiting (Std. Microcode)

453 ACTIVE Activeinterrupt bitword (Std. Microcode)

457 - Zero (Extension of MASKTAB by convention; set by OS)
460-477 MASKTAB Mask table for convert (Std. Microcode; set by OS)

500 PCLOC Saved interrupt PC (Std. Microcode)

501-517 INTVEC Interrupt Transfer Vector (Std. Microcode)

521 KBLK Disk command block address (Std. Microcode)

522 KSTAT Disk status at start of current sector (Std. Microcode)
523 KADDR Disk address of latest disk command (Std. Microcode)
524 - Sector interrupt bit mask (Std. Microcode)

525 ITTIME Interval timer time (Std. Microcode)

527 TRAPPC Trap saved PC (Std. Microcode)

530-567 TRAPVEC Trap vector (Std. Microcode)

570-577 - Timer data (OS)

600 EPLOC Ethernet post location (Std. Microcode)

601 EBLOC Ethernet interrupt bit mask (Std. Microcode)

602 EELOC Ethernet ending count (Std. Microcode)

603 ELLOC Ethernet load location (Std. Microcode)

604 EICLOC Ethernet input buffer count (Std. Microcode)

605 EIPLOC Ethernet input buffer pointer (Std. Microcode)

606 EOCLOC Ethernet output buffer count (Std. Microcode)

607 EOPLOC Ethernet output buffer pointer (Std. Microcode)

610 EHLOC Ethernet host address (Std. Microcode)

611-612 - Reserved for Ethernet expansion (Std. Microcode)

613 - Alto I/1l indication that microcode can interrogate (0=Alto |, -1=Alto I1)
614 DCBR Posted by parity task when a main memory parity error is detected.
615 KNMAR " (Std. Microcode)

616 DWA "

617 CBA "

620 PC "

621 SAD "

(Note: Disk and Ethernet bootstrap loaders run in 622-777.)

700-707 - Saved registers (Swat)

Page 376B:

177016-177017 UTILOUT Printer output (Std. Hardware)

177020-177023 XBUS Utility input bus (Alto Il Std. Hardware)

177024 MEAR Memory Error Address Register (Alto Il Std. Hardware)
177025 MESR Memory error status register (Alto | Std. Hardware)
177026 MECR Memory error control register (Alto |1 Std. Hardware)
177030-177033 UTILIN Printer status, mouse, keyset (all 4 locations return same thing)
177034-177037 KBDAD Undecoded keyboard (Std. Hardware)

Page 377B:

177740-177757 BANKREGS Extended memory option bank registers -- see section 2.3

Alto Hardware M anual

APPENDIX C - RESERVED SIO BITS

Bit0 100000B Standard Alto: Software boot feature -- See SIO, section 3.3
Bit 14 000002B Standard Alto: Ethernet
Bit 15 000001B Standard Alto: Ethernet

APPENDIX D - STANDARD TASKS
Task Name Section Description

0 Emulator 3 Lowest priority. Wakeup always true.
1 - - unused
2 - - unused
3 - - unused
4 KSEC 6 Disk sector task
5 - - unused
6 - - unused
7 ETHER 7 Ethernet task
10B MRT - Memory refresh task. Wakeup every 38.08 microseconds.
11B DWT 4 Display word task
12B CURT 4 Cursor task
13B DHT 4 Display horizontal task
14B DVT 4 Display vertical task. Wakeup every 16.666 milliseconds.
15B PART 55 Parity task. Wakeup generated by parity error.
6 Disk word task

16B KWD
- unused

Alto Hardware M anual

Opcode

60000-60377
60400-60777
61000-61377
61400-61777
62000-62377
62400-62777
63000-63377
63400-63777
64000-64377
64400-64777
65000-65377
65400-65777
66000-66377
66400-66777
67000-67377
67400-67777
70000-70377
70400-70777
71000-71377
71400-71777
72000-72377
72400-72777
73000-73377
73400-73777
74000-74377
74400-74777
75000-75377
75400-75777
76000-76377
76400-76777
77000-77377
77400-77777

APPENDIX E - SGROUP INSTRUCTION SUMMARY

Trap location

531
532
533
534
535
536
537
540

543
544
545
547
550
551
552
553
554
555
556
557
560
561
562
563
564
565
566
567

Name

CYCLE
RAM trap
Parameterless opcodes to 61026, ROM trap for rest
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
JSRII
JSRIS
RAM trap
RAM trap
RAM trap
CONVERT
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
RAM trap
ROM trap, reserved for Swat

APPENDIX F-ALTO 1 /ALTO Il DIFFERENCES

The minor differences between Alto | and Alto 11 are explained in this manual. This appendix serves as
an index of those differences:

Memory reference timing (section 2.3)
Certain emulator instructions (RCLK, SIO, SIT, VERS, DREAD,
DEXCH, DIAGNOSE1, DIAGNOSE2; section 3.3)

Keyboard layout (section 5.1)

External device connector (section 5.4)
Memory configuration switch (section 5.5)
Memory parity error detection (section 5.5)
2K ROM and 3K RAM options (section 8.4)
Extended memory option (section 2.3)

70

Alto Hardware M anual

APPENDIX G - SUMMARY OF KNOWN FEATURES/BUGS

Alto | version 23:
VERS instruction:

BITBLT instruction:

Alto Il version 2:
VERS instruction:
BITBLT instruction:

RDRAM instruction:

DEXCH instruction:

SIT instruction:

ACSOURCE function:

Alto | version 24:
No known bugs.
Alto |l version 3:

SIT instruction:

IN RELEASED MICROCODE VERSIONS

returns engineering number 0, microcode version 1.

doesn’t work reliably if some ram-related task is running
(e.g., the Trident disk).

returns engineering number 2, microcode version 0.

doesn’t work reliably if some ram-related task is running
(e.g., the Trident disk). ExpectsL to be zeroed by the
caler.

does not work reliably when the Ethernet interface is
active.

does not work at al.

TIMEMASK is 77008B but should be 7774B. Failsto store
into ITQUAN.

does not work precisely as documented. Consult
McCreight if you really need to know.

Failsto store into ITQUAN.

71

Alto Hardware M anual

APPENDIX H - PARC/SDD RESERVED MEMORY LOCATIONS

All numbersarein octal.
L ocation

Page O:
451

456

526

622
630-640
631-661
640-644
640-651
720-777
776-777

Page 376B:
177100

177101
177140-177157
177200-177204
177234-177237
177240-177257
177244-177247

Page 377B:

177400-177405
177400
177420
177440
177460
177600-177677
177700
177701
177720-177737
177764-177773

Name

APPENDIX | - PARC/SDD RESERVED s|0 (STARTF) BITS

177776 -

177776 -

177777 -
Bit1 0400008
Bit 2 020000B
Bit 3 010000B
Bit 4 004000B
Bit5 002000B
Bit 6 001000B
Bit 8 0002008
Bit9 000100B
Bit 10 0000408
Bit 11 0000208
Bit 12 000010B
Bit 13 000004B

Contents

Color map pointer

Mesa disaster flag

SamlITalk trap exit instruction

Tape control block list

Second Ethernet control block
Hexadecimal floating-point microcode
Trident disk control block

Third Ethernet control block

SLOT devices

Music

Summagraphics tablet X
Summagraphics tablet Y
Organ keyboard

PROM programmer
Experimental cursor control
Alto |l debugger

Graphics keyboard

Maxc2 maintenance interface
Alto DLSinput

Alto DLS output

EIA interface output bit

EIA interface input bit

TV Cameralnterface

Redactron tape drive
Digital-Analog Converter
Digital-Anaog Converter, Joystick
Digital-Analog Converter, Joystick

Maxc2 Memory Interface
Maxc2 Memory Interface
Maxc2 Memory Interface
Aurora

Arpanet Interface
Arpanet Interface

Tape controller

available

Trident disk interface
Trident disk interface
available

Printer interfaces (Orbit, Slot)

Bits 10-11 Second Ethernet interface
Bits 12-13 Third Ethernet interface

Devices

Trident Disk Controller
Orbit

Slot

Tape Controller

Audio

Aurora

Maxc2 Memory Interface

APPENDIX J - PARC/SDD TASKS

Tasks

3and 17B
1

1

5and 6

?

?

17B

Alto Hardware M anual

APPENDIX K - OPTIONAL ALTO PERIPHERALS

This appendix lists hardware items that have been interfaced to the Alto in quantities greater than one.
EOD/SPG is the source for information about many of these interfaces and devices, and may be willing to
contract to provide necessary hardware. Sources in PARC are not committed to producing any hardware.
No software guarantees are made about any of these devices, except as noted.

HyType Printer. A spinning daisy printer can be ordered from Diablo Systems, Inc.
Arrangements can be made with spG to build a cable that will connect the printer to
the "printer connector" on the rear of the Alto. No additona hardware is required,
although printers attached to Alto Il are required to be self-powered. Software:
Bravo prints on the Diablo printer, and a Bcpl subroutine package (DiabloPrinter.Br)
is available to drive the interface.

Versatec Printer/Plotter. The Versatec plotters and printer/plotters can be connected
to the Alto Il without additional hardware. Contact SPG to get a cable (P/IN 216540).

Tape Controller. A two-card processor-bus interface to MDs and Kennedy tape
drives. It will handle 1600 bpi phase-encoded tapes only. Contact AsD-South.

Trident Disk Interface. An interface to the Trident family of disk drives,
manufactured by Calcomp. Alto Il owners should contact sPG, Alto | owners contact
PARC/CSL. Software: The Trident disks may be accessed in conjunction with
Operating-System routines, using the TFs software package (see Alto Subsystems
documentation).

Orbit. A piece of hardware which can be used to drive avariety of SLOT printers
that obey the "9-wire standard Ros interface." Contact ASD-South.

Extra Ethernets. Up to two extra Ethenets can be installed in an Alto of any vintage.
Contact PARC/CSL.

Ethernet Repeaters. Many miles of Ethernet can be hooked together with these.
Contact PARC/CSL.

ArpaNet (BBN 1822) Interface. Aninterface to ArpaNet Imps and Packet Radio Units.
Contact PARC/SSL.

EIA Interface. Aninterfaceto an AMI S1883 UART and an AMI S2350 USRT. Contact
ASD-South.

Communications Processor. Terminates up to 16 lines at many speeds, codes and line
control disciplines. Contact AsD-South.

73

