
c Xerox Corporation 1979/1980

BCPL Menu Package Description
Keith Knox

July 5, 1978

Filed on: [Maxc1]<AltoDocs>Menu.press

1. Introduction

An interactive program is one which communicates with the user, and whose output depends
on responses it receives from the user. Two possible forms that these responses can take
are 1) a dialog -- an exchange of questions and answers or 2) a menu -- a visual display of
choices on the screen which are selected with the mouse. One generally opts for the dialog
method because the graphical method of using menus is so cumbersome to implement.
When a menu is used, it must first be designed on paper (or in your head) and then
translated into code to create it on the screen. As for inputting information from the mouse,
individual programmers may have developed special procedures for their own use, but even
so, they are probably not easily transferable from one application to the next.

The menu package, described in this report, is an attempt to simplify both the design and
the implementation of menus for use in BCPL software. This package is only a first cut at
this goal and it is expected to undergo many changes in the future as it matures. In its
present form, a programmer can use the Alto screen and the mouse to interactively create a
menu, and then use the software package to implement it in his own program.

1.1. Creating and Using a Menu

To illustrate the method of creating and using a menu, first consider a very simple program.
Let’s say that someone wishes to write a program that will do only one function -- invert the
screen. To implement this he would like to present the user with a menu containing two
boxes, one labeled INVERT and one labeled QUIT. When the user selects the INVERT box,
the screen should turn from white to black (or visa versa), and when he selects the QUIT
box, the program should exit.

A program using this menu can be easily implemented with the Menu package. First the
menu is designed with the menu editor, MenuEdit.RUN. This program lets one create and
manipulate rectangular boxes on the display screen using the mouse and a few simple
keyboard commands. The description of how this is done is given in section 3. Then
MenuEdit writes out two BCPL files which contain a few manifest constants and some tables
describing the layout of the menu. These files are compiled and loaded with the main
program along with the rest of the Menu package, which consists of three .BR files. The
initialization procedures then use this code to create and display the menu. These points
are illustrated in the implementation in the sample program given below.

BCPL Menu Package Description 2

2. Sample Program

The sample program, "Invert.bcpl", is shown below in section 2.1. It simply inverts the
display screen when the "Invert Screen" box is selected. A menu was created with
MenuEdit and recorded onto the two source files "InvertNames.d" and "InvertTables.bcpl"
also shown below. The "names" file contains the name definitions of the two boxes and is
included in the program with a "get" statement. The "tables" file, on the other hand, is
compiled separately and loaded along with the main program. It contains a procedure called
MenuInitHelp() which is called by CreateMenuDisplayStream(). The procedure
MenuInitHelp() returns a pointer to the DATA structure which contains the menu pointer, a
string list pointer and the dcb for the menu. This structure is stored in the external static
MenuData. The definitions file "MenuDefs.d" contains the external statements for the
procedures that are used from the package along with a few structure definitions.

To initialize the menu, the programmer first allocates some space for the menu bitmap. The
amount of core required can be found from MenuSize(). Next a display stream is formed
and returned by CreateMenuDisplayStream(). This completes the initialization of the menu.
The OS routine ShowDisplayStream() can be used to display, move or remove the menu. In
the sample program, the menu is displayed below the system display stream, although
selections may be made on the menu no matter where it is finally located on the screen. If
the menu is removed from the screen and its bitmap area is re-used by some other part of
the program, a second call to CreateMenuDisplayStream() will restore the bitmap for the
menu.

Selections on the menu are determined by repeated calls to ScanMenu(). The selection of a
box is made by pointing to the box with the cursor and pressing and releasing a mouse key.
If the cursor is moved out of the box before the key is released then the box is not selected.
The process of selection leaves the sense of the box flipped. In the sample program, it is
inverted again with a call to DeSelect(). The value that is returned by ScanMenu() when a
box is selected is the value defined in the manifest "names" file that is included in the
program. The names used below, "invert" and "quit", were identified with the appropriate
boxes when the menu was first created in MenuEdit. When a box is selected, the proper
action is taken simply by switching on the returned value into one of the defined "names".

2.1. Invert.bcpl

// Invert.bcpl -- Inverts the screen, uses output of MenuEdit.run
// bldr Invert InvertTables Menu MenuBox MenuBoxUtils

get "InvertNames.d"
get "MenuDefs.d"

external
[
GetFixed
ShowDisplayStream
]

let main() be
[
// test of the menu package
let length=MenuSize()
let buffer=GetFixed(length)
let stream=CreateMenuDisplayStream(buffer,length)
ShowDisplayStream(stream)

// loop over menu
let menu=MenuData>>DATA.menu

BCPL Menu Package Description 3

[
let selection=ScanMenu(menu)
switchon selection into

[
case invert: Invert() ; endcase
case quit: finish
]

DeSelect(menu!selection)
] repeat

]

and Invert() be
[
let dcb=@#420
while dcb do

[
dcb>>DCB.background=not dcb>>DCB.background
dcb=@dcb
]

]

2.2. InvertNames.d

// InvertNames.d -- Manifest names for menu windows.

manifest
[
invert=1
quit=2
]

2.3. InvertTables.bcpl

// InvertTables.bcpl -- Tables for setting up menu windows.

external MenuInitHelp

let MenuInitHelp() = valof
[
// set up menu table
let menu=table

[
2
0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
]

menu!1=table [0;#4;#114;#164;#336;#227]
menu!2=table [0;#4;#456;#164;#700;#227]

// set up stringlist table

BCPL Menu Package Description 4

let stringlist=table
[
2
0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0
]

stringlist!1="Invert Screen"
stringlist!2="Quit"

// set up menuDCB table
let menuDCB=table

[
0
0;#0;0;58
0;#2032;0;18
0;#0;0;328
]

test (menuDCB&1) eq 1 ifso menuDCB=menuDCB+1
ifnot for n=0 to 11 do menuDCB!n=menuDCB!(n+1)

for n=0 to 1 do menuDCB!(4*n)=menuDCB+4*(n+1)

// now finish up
let temp=table [0;0;0]
temp!0=menu
temp!1=stringlist
temp!2=menuDCB
resultis temp
]

3. MenuEdit.run

This program is just a first cut at a menu editor. As a result, MenuEdit itself does not use a
menu. It does, however, allow one to interactively design a menu on the screen.

There are no command line switches. After starting the program the version number is
written on the system stream and the user is informed to press the red key. Continuing by
pressing the red key leads to a completely blank screen where menu boxes can be defined.

3.1. Commands

There are two ways of entering commands, by the keyboard and by the mouse. These
commands allow one to define rectangular boxes on the screen and then move them,
change their shape, outline them, insert strings etc.. The description of the final menu is
then be written out as two BCPL files containing the proper definitions in the form of BCPL
tables and manifest statements. This description can later be read back in and editted.

3.2. Mouse Commands

A box is created by pressing the left (red) mouse key, moving the cursor and releasing the
key. The two diagonal corners of a rectangle are defined by the starting and ending points
and this area is marked with a one bit wide outline. If the middle key is now pressed, the
cursor moves to the lower right corner of the nearest box and the box follows the cursor,
stopping when the key is released. The size of a box can be changed by pressing the right
key. The cursor then moves to the lower right corner of the nearest box. The upper left

BCPL Menu Package Description 5

corner of the box remains fixed while the lower right corner follows the cursor stopping
again when the key is released. Because of space allocations made, there is an upper limit
of 256 boxes imposed on any menu created by MenuEdit.

If the left mouse key is pressed when the cursor is inside an existing box, then instead of
creating a new box, the existing box can be "selected". Releasing the key inside the box
selects that box. Selected boxes are marked by flipping the sense within the box. All
"selected" boxes can then be acted upon by the keyboard commands discussed in the next
section. Re-selecting an already selected box de-selectes it.

3.3. Keyboard Commands

The keyboard commands that are available are given below. Except for Read and Quit, none
of them are active unless there is at least one box created on the screen.

For some keyboard commands, input from the keyboard may be required. In most cases, the
menu display is removed and the system display appears with instructions or questions.
When entering a value from the keyboard, terminate the entry with a CR. Typing a CR alone
gives the default value which is shown enclosed in square brackets.

Keyboard Commands:

Q -- quit, asks for confirmation with a CR.

R -- read in a menu description from two BCPL source files, asks for confirmation with a CR.
The first is a definitions file containing manifest constants defining the names of each box.
The second file is the source which will be used by the Menu package to set up the menu in
the user’s program. MenuEdit reads these files and displays the menu and waits for new
commands. The file names must end in "Names.d" and "Tables.bcpl" in order to be read
in. Therefore, only the file name kernel need be entered. For example, to read in
"MenuNames.d" and "MenuTables.bcpl", enter the name "Menu".

W -- write the description of the existing menu into two source files.

<TAB> -- a tab does a refresh of the screen.

E -- selects all boxes.

 -- hitting the delete key removes all selections and resets the default case of making
the strings visible (instead of the names, see the <ctrl>N command).

<ctrl>A -- select all inactive boxes and de-select all active ones. The purpose of this
command is to allow identification of inactive boxes. See below for definition of activity.

<ctrl>N -- display the box names instead of the strings for each box.

In the following commands FIRST select the box or boxes, THEN type the command.

A -- switch the definition of the selected boxes between active and inactive. An inactive box
will not be able to be selected when the menu is implemented in a program. Identifying
which boxes are inactive is accomplished by use of the <ctrl>A command (see above).

B -- switch the definition of the selected boxes between normal and bold display of text.

BCPL Menu Package Description 6

C -- change the size of the selected boxes. First select the boxes to be changed then enter
the new width and height from the keyboard.

D -- delete the selected boxes.

F -- fill the selected boxes with a color. The colors allowed are White, Black, Grey and
Unfilled. The default case is Unfilled when a box is first created. At the present time, this
option is not recommended for use, but is included for completeness.

G -- set the gap between the selected boxes either vertically or horizontally. The first box
selected is left in its original position and the rest are positioned to the right or below. Enter
the amount of spacing from the keyboard, then type a V or an H to line them up vertically or
horizontally.

I -- insert strings into the selected boxes. Only one string may be included in each box.

L -- line up the selected boxes either vertically or horizontally. The first box selected is left in
its original position and the rest are lined up to the right or below. Type a V or an H to line
them up vertically or horizontally.

M -- move all the selected boxes as a group. The selected boxes are temporarily replaced
with the surrounding box which can them be moved with the middle key of the mouse. No
further commands can be implemented until the middle key of the mouse is pressed and
then released.

N -- name the selected boxes. The name is not visible on the menu. It is written in the
definitions file which should be included in the user’s program. See the sample program for
the use of the names. See also the Format of a Menu in section 4.1.

O -- outline the selected boxes. The width of the outline in bits is entered from the
keyboard. The color of the outline can also be specified. The choices are White, Black,
Grey and Flipped.

S -- makes a group of boxes all the same size. All the boxes are made the same size as the
first box to be selected.

T -- position the text in the selected boxes in positions other than the default case of the
center of each box. For each selected box in turn, the beginning of the text will be written
in the cursor and the new text position is indicated by moving the cursor and pressing and
releasing the left mouse key. The default position can be restored by pressing and releasing
any other mouse key instead.

4. Software Package Procedures

There are four basic .BR files which make up the Menu software package. These are
Menu.br, MenuBox.br, MenuBoxUtils.br. and MenuKeyboard.br. There is also one definitions
file, MenuDefs.d. Menu contains the high level menu routines which the programmer will use
most often. MenuBox contains lower level routines which may be used by the programmer,
depending on the complexity of the program. MenuBoxUtils contains assembly language
routines which are used by MenuBox but are not expected to be used by a programmer.
MenuKeyboard is an auxiliary package which contains a keyboard reading procedure for
entering data from the keyboard into a box on the screen.

BCPL Menu Package Description 7

4.1. Format of a Menu

A menu is a pointer to a structure. The first word of this structure is the length, i.e. number
of items on the menu. The following words point to boxes.

A box is pointer to a structure which describes a rectangular region on the display screen.
This structure is 6 words long and is described in the file MenuDefs.d. The first word is the
dcb (if any) that covers the designated area of the screen. The second word contains
several flags which tell if (and how) the box is outlined, colored, inactive, selected and bold.
The next two words are the x-y coordinates of the upper left corner (the origin) of the box.
The last two words are the x-y coordinates of the lower right corner (the corner) of the box.
These four words also contain the description of where the text is to be positioned within the
box.

If the dcb entry is zero then the x-y coordinates are absolute coordinates on the screen, i.e.
they vary between 0-605 and 0-807. If the dcb entry is non-zero, i.e. there is a dcb covering
the area defined by the box, then the x-y coordinates are defined relative to the dcb. This is
an important point. This means that as a dcb is moved on the screen, the box definition
moves with it. Therefore, a routine like CursorInside (see MenuBox) can always tell if the
cursor is inside a particular box, no matter where the dcb is moved to, as long as it stays on
the dcb chain. Another important point is that a dcb relative description of a box is
restricted to one dcb. It may not cross dcb boundaries. Of course, an absolute coordinate
description (i.e. dcb entry = 0) is independent of dcb boundaries. Any routine which
manipulates bitmaps can deal only with a box with a dcb relative description.

Another item which has the same format as a menu is the list of the strings that go in the
boxes. Again the first word of the structure is the length and is equal to the length of the
menu. The n-th element of the string list is a pointer to the string that gets written in the
corresponding box on the menu. There may not be a string for each box, however, and if
not the corresponding element in the array is zero.

This array is initialized by the set up routines called by the programmer and returned in a
static called MenuData. The static points to a DATA structure. The first word of this
structure points to the menu, the second word to the string list and the third word to the dcb
for the menu. See the file Menudefs.d.

The names of the boxes are used as follows. A routine called ScanMenu() from Menu
returns a value which is the position in the menu of the box that was selected. A name
which is assigned to a box, is equal to its position in the menu, so that the programmer does
not have to try to figure out which number goes with which box that he sees on the screen.
These names are written on a definitions file as manifest constants which can be included in
the user’s main program in a "get" statement. In this way, a programmer can define a
meaningful name to each box which can indicate the function that was selected. No names
are assigned to boxes unless an explicit indication is made within MenuEdit.run by use of the
N command.

4.2. MenuDefs.d

This file contains external statements and structures which the programmer will find useful
and should be included in a "get" in the main program. It includes the BOX, MENU and
DATA structures described in the previous section.

BCPL Menu Package Description 8

4.3. Menu.br

MenuSize()

If the menu has not yet been initialized, MenuSize calls the routine MenuInitHelp(). This
routine is part of the BCPL code generated by MenuEdit.RUN and is used to initialize the
menu descriptions. It returns a pointer to the DATA structure which is then stored in the
external static MenuData (see section 4.1.). MenuSize returns the number of words that are
needed to display this menu. This is the minimum number of words required. It is the
programer’s responsibility to allocate the proper amount of storage.

CreateMenuDisplayStream(buffer, length)

If the menu has not yet been initialized, CreateMenuDisplayStream also will call the routine
MenuInitHelp() to initialize the menu. CreateMenuDisplayStream returns a pointer to a two
word display stream that can be used by the OS routine ShowDisplayStream to display the
menu bitmap. Buffer is a pointer to a block of storage that can be used to create the bitmap
for the menu. If the length of the buffer is less than is required then
CreateMenuDisplayStream returns false. A complete dcb chain including blank dcb’s to skip
the gap areas is created but the stream returned has the top and bottom blank dcb’s
stripped off. Strings are written on the screen by the procedure called WriteBox(), (see
section 4.4). The font used is obtained by a call to GetFont(dsp).

ScanMenu(menu, loopOverMenu [true], returnKey [false], sweep [false])

ScanMenu continuously loops over the menu and if a box is selected then it flips the sense
of the box and returns its position in the menu. Only active boxes are scanned, inactive
boxes are ignored, unless the external static EverthingActive is non-zero. If loopOverMenu is
false, it makes one pass over the menu returning false if nothing was selected. This allows
the programer to check other conditions such as the keyboard stream at the same time. If
returnKey is non-zero then the mouse key that was used to select the box is returned in the
left byte. The value of the mouse key is given by (not @#177030) & 7. The parameter
sweep is put in as the last argument of select (see MenuBoxUtils). If sweep is false then
when the cursor is moved out of a box while the key is still depressed, the box is not
selected. If sweep is true then the box is selected.

DeSelect(box)

This routine inverts the sense of the indicated box and sets the "selected" bit in its structure
to false.

ShowMenu()

This routine removes whatever is on the screen and shows the complete menu exactly as it
is seen in MenuEdit. CreateMenuDisplayStream must be run before ShowMenu is called.
This procedure is provided as an alternative to using ShowDisplayStream to display the
stream returned in creating the menu.

4.4. MenuBox.br

CreateBox(Xo, Yo, Xc, Yc, inputZone [sysZone])

The first four arguments are, in order, the x-y coordinates of the upper left corner and the x-
y coordinates of the lower right corner of the box expressed in absolute coordinates on the
screen. Then CreateBox allocates a block 6 words long from inputZone (or sysZone if
inputZone is zero or absent) and converts the coordinates relative to a dcb presently on the

BCPL Menu Package Description 9

screen if possible. The pointer to the block is returned. If no space was available then it
returns zero.

CursorInside(box, XCursor [0], YCursor [0])

Returns true if the cursor is inside the box and false if not. The (0,0) point on the cursor is
used unless XCursor and YCursor are specified. If the box is defined with relative
coordinates then CursorInside returns false if the dcb is not on the dcb chain.

OutlineBox(box, bits [box>>BOX.bits], outline [box>>BOX.outline])

Returns true if the box was successfully outlined. It returns false if the box is not defined
dcb relative. The second argument is the width of the outline in bits. The third argument
indicates how the outline is to be done. Outline=0 means outline by flipping memory,
outline=1,2 or 3 means outline by replacing with black (1’s), grey and white (0’s),
respectively. A box can be outlined with a line of zero bits, i.e. no outline. If either of the
last two arguments are omitted, then their values are read from the box structure.

FillBox(box, background [box>>BOX.background], skip [1])

Fills the box WITHIN the present outline and returns true if the box was successfully
changed. Background has the same meaning as in OutlineBox, i.e. background=0 means
flip the sense of the box, and background=1,2 or 3 means fill with black (1’s), grey and
white (0’s), respectively. If the second argument is omitted, then its value is read from the
box structure. The last argument is the number of bits to skip between the outline and
where the box interior is changed. It defaults to one bit.

NearestBox(menu)

Returns the number of the box whose lower right corner is geometrically closest to the
cursor. Returns false if it is a zero length menu.

FindDCB(box, dcb [#420])

Returns the number of scan lines before the dcb containing the box. It returns 0 if the box
is defined with absolute coordinates and it returns -1 if the box is defined dcb relative but
the dcb is not on the dcb chain. The default chain is the display chain, i.e. @#420 if dcb is
not specified.

ConvertToRelative(box, dcb [@#420])

This routine searches the dcb chain (starting at #420), and if possible converts a box
defined with absolute coordinates to dcb relative. If the box was already dcb relative then it
returns without changing it. If dcb is present and non-zero, then it searches the dcb chain
starting with dcb, instead of the display dcb chain beginning at #420.

WriteBox(box, string, bold [box>>BOX.bold], font [sysFont], xmode [box>>BOX.xmode], xoffset
[box>>BOX.xoffset], ymode [box>>BOX.ymode], yoffset [box>>BOX.yoffset])

This procedure writes one string, locating it at an arbitrary position within the box. If the
string is longer than the length of the box (minus twice the width of the outline) then only
part of the string is written. The writing is done by ORing and the box is assumed to have
been erased beforehand. If bold is non-zero, then the string is written in bold. If font is
omitted or zero then it becomes GetFont(dsp). If the last four arguments are included, then
they define the position where the string will be written within the box. The mode is
centered if zero and started from top or left if non-zero. The offset describes how many bits
to offset from the starting position. The x and y dimensions are treated independently. If the

BCPL Menu Package Description 10

parameters bold, xmode, xoffset, ymode, yoffset are omitted, then they are read from the box
structure.

4.5. MenuBoxUtils.br

write(string, nwrds, bitstart, wordstart, bitlimit, font)

Writes the string into memory using the specified font. The address of the beginning line is
wordstart and the bit position within the line is bitstart (bitstart=0 is the first bit). The
number of words/scan line is nwrds and only bitlimit bits of the string are written. It returns
the number of bits actually written.

CallBitBlt(fn,u,dbca,dbmr,dlx,dty,dw,dh,sbca,sbmr,slx,sty,g0,g1,g2,g3)

This routine takes as many arguments as are included in the calling statement and fills them
into a table and then invokes BitBlt from the ROM.

select(xleft, xright, ybottom, ytop, key, flag)

This routine checks the specified key and if the key is released while the cursor is within the
indicated region, it returns true. If it is not released before the cursor leaves the region, then
it returns flag. Therefore, set flag to whatever you would like to receive when that condition
occurs. The key is calculated by (not @#177030) & 7.

4.6. MenuKeyboard.br

GetString(box, defstring, zone)

GetString returns the address of a string allocated from zone which contains the information
typed in from the keyboard. The indicated box is erased and a small blinking box is put in
the upper left hand corner. Defstring is a default string which was previously allocated from
zone. If defstring is non-zero, it will be displayed in the box as a starting point for keyboard
entry. It will be automatically de-allocated from zone.

5. The Menu Package and the Trident

Bitmap manipulation on the screen, i.e. erasing, flipping the sense, outlining, etc. is done by
the routine called CallBitBlt(), defined in MenuBoxUtils.BR. This routine uses the BitBLT
instruction from the ROM. For most programs this presents no problem, but for software
which uses the Trident code, special care must be exercised. The problem is that for PROM
microcode versions 23 or before (version 2 for Alto II’s), BitBLT does not function properly if
the Trident code is loaded in the RAM. For this reason, there are two versions of the
CallBitBlt procedure. A second version of MenuBoxUtils (MenuBoxUtilsSoft) is provided
which uses the SoftBitBlt package.

If wish to use the Trident code and the Menu package at the same time, then you should
load your program with MenuBoxUtilsSoft.br (instead of MenuBoxUtils) and the SoftBitBlt
package, BitBltA.br and BitBltB.br.

BCPL Menu Package Description 11

Although this will increase the time needed to erase or blacken a menu box, it will be
noticeable only if the boxes being erased or selected are large.

6. The Menu Package and Contexts

The Menu Package while scanning the menu or waiting for keyboard input runs an internal
procedure called MenuIdle. If the menu is being used in a context then blocking can be
made to occur simply by setting the external static MenuIdle=Block.

