Cleared version of May 24, 1981

ALTO SOFTWARE PACKAGES

Compiled on: May 24, 1981

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

¢ Xerox Corporation 1981

Cleared version of May 24, 1981

2
Thislist isadirectory of major Alto BCPL software packages. The files for these programs are available on
the <Alto> directory. The documentation for these packagesis available on <AltoDocs>. This document is
filed as <AltoDocs>Packages.press. Some packages have closely-corresonding subsystems (e.g., TFS
Trident disk software and TFU utility); in this case, the bulk of the documentation islocated with in the
Alto Subsystems Manual, and a cross-reference is included in this document.
The name at the end of each short description is that of the person last known to be responsible for the
package.
Theitems listed below may be flagged by a single character to indicate where the documentation may be
found:
* documentation for these items is contained within this manual;
** these items are described further in a separate document;
seethe Alto Operating System manual for documentation.

#ALLOC: A boundary-tag storage allocator. Documentation isin the Alto Operating System
Manual. (David Boggs)

*ASIM: A procedure which simulates an Alto microprocessor equipped with aRAM. (Peter
Deutsch)

*BCPLRUNTIME: A replacement for the standard Bepl runtime (in the OS), in whihcch nearly al
of the operations have been microprogrammed. Typical Bcpl programs run 25 to 30 percent
faster. (Ed Taft)

*BITBLT: Emulates the BitBlIt instruction in BCPL/ASM. (David Boggs)

#BFS: The "basic file system" subroutines. These do page-oriented I/O to disk files organized
according to standard Alto conventions. Documentation isin the Alto Operating System
Manual. (David Boggs)

*BYTEBLT: Transfers an arbitrary block of 8-bit bytes from one place in memory to another. (Ed
Taft)

*CMDSCAN: An interactive command scanner and collection of command interpretation
procedures. (Ed Taft)

*CONTEXT: Provides facilities for managing multiple execution contexts for Bepl procedures. (Ed
Taft)

DCBPRESS: Thisfile provides one subroutine for making a one-page Press file from an Alto screen
bit-map. The calling sequence is. DCBPress("filename”, pDCB, [width, height, left, top]), which
writes afile of the given name using pDCB as a pointer to adisplay control block. The last four
parameters allow you to select a portion of the rectangle described by the DCB for printing.
Width is the width (in bits) of the window you wish to see; height is the height in scan-lines; |eft
isthe offset from the | eft edge of the bit-map; top is the offset from the top of the bit-map. (Bob
Sproull)

*DIABLOPRINTER: Routines that implement streams on the Diablo printer. (Ed Taft)

#DISKSTREAMS: The disk streams package provides facilities for doing efficient sequential
input/output to and from Alto disk files. Documentation isin the Alto Operating System
Manual. (David Boggs)

*DPDIVIDE: Computes the quotient and remainder from the division of one 32-bit 2's

complement number by another. (Peter Deutsch)

#DSPSTREAMS: Provides a capability for display streams, multiple fonts, bit repositioning,

Cleared version of May 24, 1981

3
selective erasing and polarity inversion. Documentation isin the Alto Operating System Manual.
(Peter Deutsch)

*EFTP package: A Pup-based file-transfer package using asimple (EFTP) communications
protacol. (David Boggs)

*ETHERBOOT: A subroutine that will "boot" the Alto from one of several boot files supplied by
Ethernet gateways. (Ed Taft)

*ETHERRCVR: This package runs the Ethernet receiver in promiscuous mode copying every
packet it hearsinto an internal buffer. It isuseful to diagnostic programs which want to provoke

inter-task interference failures. (David Boggs)

*ERP SERVER: implements a Pup Event Report Protocol (ERP) server on top of Levell of the Pup
package. (David Boggs)

*ERP USER: A self-contained subroutine that logs events using the Pup Event Report protocol.
(Bob Sproull)

*FANCYTEMPLATE: A fancy version of the TEMPLATE package. (Ed McCreight)

*FINDPKG: searches standard Alto files for certain simple kinds of patterns at very high Speeds
using special microcode. (Peter Deutsch)

*FLOAT: Floating-point package for the Alto that uses no special microcode. (Bob Sproull)
*FORMAT: Routines for doing formatted 1/0. (Ed McCreight)
*FTPPACKAGE: File Transfer Protocol (FTP) routines. (David Boggs)

*GETSETBITS: makesit easy to extract and replace strings of up to 16 bitsin a vector of bits.
(Peter Deutsch)

*GP: Genera -purpose routines for parsing command lines and the like. (Ed Taft)

*INTERRUPT: permits Bepl procedures to be called as aresult of hardware interrupts on the Alto.
(Ed Taft)

*| SF: a package that provides pseudo-ramdom access to Alto files. (Peter Deutsch)
*KBD: provides a basic keyboard input stream capability. (Peter Deutsch)

*KPM: asimple efficient Knuth-Pratt-Morris pattern match of a name against atemplate that may
contain one or more wildcard characters. (Ed Taft)

*LOADRAM: loads a’ Pack Ram Image’ (see PackMu in the subsystems documentation) into the
ram, and optionally performsa’silent boot’ to start one or more tasksin the Ram. (Ed Taft)

*MDI: Subroutine that looks up multiple filesin one pass through the directory. (Peter Deutsch)
*OVERLAY S: Subroutine package for handling Bepl overlays conveniently. (Peter Deutsch)

*PAPERTAPE: A package which implements streams to a high paper tape reader and punch which
can be attached to the Alto viathe Diablo printer interface. (David Boggs)

* PUP PACKAGE: implements communications by means of Pups and Pup-based protocols.
(David Boggs and Ed Taft)

*QUEUE: asimple set of queue primitives. (Ed Taft)

Cleared version of May 24, 1981

*RANDOM: generates random numbers. (Ed Taft)

*READMB: Subroutine for reading micro-binary files created by MICRO (and other
microassemblers). (Peter Deutsch)

*READMU: Subroutine for reading microcode files created by MU. (Chuck Thacker)
*READUSERCMITEM: reads items from user profile files. (Peter Deutsch)

** READPACKEDRAM: Allows Alto programs which use the RAM to check the constant memory
and load the RAM as a part of their initialization. See Alto Subsystems Manual. (Peter Deutsch)

*RENAMEFILE: renames afile. (David Boggs)
*RINGBUFFER: a set of procedures for buffering data by means of circular buffers. (Ed Taft)

*RWREG: Procedures for reading and writing the Alto microprocessor R and S registers under
program control. (Peter Deutsch)

*SCANFILE: This package provides procedures for reading Alto files at full disk speed, and
overlapping computation with the reading. (Note: asimilar capability is now provided by the

Operating System; see the documentation in the OS manual.) (Peter Deutsch)

*SCV': Scan-converts objects from a description of the boundaries of the object. (Bob Sproull)

*SDIALOG: A package for managing simple interactive dialogs with auser. It helps prompting
and response parsing. (Bruce Parsley)

** SORTPKG: a package for sorting things of arbitrary sort--you provide a"get" routine, a "put"
routine and a " comparison” routine. Documentation isfound in the first page of the Bepl

sources. (Ed McCreight)
*SPLINE: procedures for fitting cubic splinesto sets of knots. (Patrick Baudelaire)

*STRINGS: useful procedures for extracting, concatenating, and comparing strings, plus string
streams (Ed Taft)

*TEMPLATE: formats output to a stream according to atemplate provided as a string. (Ed Taft)

*TIME: Subroutines for converting time-of-day readings to and from human-readable form. (Ed
Taft)

*TIMER: aset of procedures for setting, testing and blocking on timers. (Ed Taft)
*TRACE: Routines for tracing BCPL procedures. (Peter Deutsch)

*UTILSTR: A collection of utility and string-manipulation procedures. (Bruce Parsley)
*VMEM: A software virtual memory for the Alto. (Peter Deutsch)

Cleared version of May 24, 1981
Alto processor simulator September 28, 1978 5

Alto processor simulator

The Asim library package very precisely simulates the Alto | or Il processor, including the 2K ROM
and extended memory options. All referencesto the various Alto memories (R registers, microinstruction
ROM/RAM, constants, main memory) occur through procedures, so the simulator may be run using the
actual contents of the RAM or a core image thereof, the real contents of main memory or a SWAT-like file
image thereof, and so on. Memory timing is simulated properly, and alarge number of minor logical
errors (such as mis-timing of memory references, assuming that L or T issafe over a TASK, or giving a

branch modifier in the instruction after a TASK) are detected.
(September 28, 1978)

Asim now simulates all the memory reference capabilities of Alto Ils, and of Alto Iswith the
doubleword store modification.

1. Requirements
Asim expects the user to provide the following 7 procedures (and declare them external):

ReadR(j) - return the contents of the’th R register. Jmay be 0 through 37B or 41B through 77B.
WriteR(j, wd) - write the value wd into the j'th R register.

ReadRAM(j) - read aword from the instruction memory as described in the Alto reference manual, to
wit: bit 4 of j decides between ROM (1) and RAM (0); bit 5 of j decides between upper 16 bits (1) and
lower (0); bits 6-15 of j givethe address. If Asimissimulating an Alto (1) with the 2K ROM option, then
when bit 4 of j is set, bit 3 of j chooses between ROMO (0) or ROM1 (1). Notethat thisis not supported by
the actual Alto hardware.

WriteRAM(j, wd) - write wd into the instruction memory. Jisasfor ReadRAM. Note that unlike the
hardware instruction, this procedure must be capable of writing into the upper and lower 16 bits
independently.

ReadCON(j) - return the j’th constant. Jis between 0 and 377B.

ReadMEM()) - return the contents of main memory location j. If Asimissimulating an Alto (1) with
extended memory, it will normally call ReadMEM(j, bank), where bank provides the 2 extra bits of
memory address. ReadMEM will still be called sometimes with only one argument for accessing /10
locations (177000B and above), and it should check for j in this range before examining bank. Note aso
that, as for the real extended memory hardware, Asim uses the contents of (simulated) location 1777408 to
determine the bank numbers for all memory accesses.

WriteMEM(j, wd) - write wd into main memory location j. With extended memory, Asim cals
WriteMEM (], wd, bank) -- note the order of the arguments.

The user program may use any implementation it wishes for these operations. The only requirement is
consistency, i.e. a Read operation must retrieve the datum given to the last Write operation for that cell.

Either the READMU package, or the PACKMU subsystem and ReadPackedRAM package,
described in separate writeups, may be useful for reading microcode into memory for simulation.
2. Use

Asimiswritten in Bepl and consists of asinglefile Asim.BR. It does not use any facilities of the Alto
OS. It providestwo externally accessible procedures (InitAsim, Asim) and a large number of externally
accessible statics. The procedures and accessible statics are declared external in the file Asim.D which the
user should "get".

InitAsim(altotype, extrarom, extendedmemory, doublestore) initializes the simulator state completely
-- declares the main memory interface to be quiescent, clears al interna registersto zero, and marks L and
T asundefined. It does not affect any of the memories. Altotype (defaults to 0) specifiesthe Alto
configuration: 1 means Alto |, 2 means Alto |1, and O means that the microprogram is supposed to execute
compatibly on both Alto | and Alto Il. Extrarom (defaults to false), if true, means that the Alto has the 2K
ROM option. Extendedmemory (defaultsto false), if true, means that the Alto has the extended memory
option. Doublestore (defaultsto false), if true, means that the Alto has doubleword store if AltoType=0

or 1 (all Alto Ilscan do doubleword stores).

Cleared version of May 24, 1981

Alto processor simulator September 28, 1978 6
Asim() executes one micro-instruction. Asim returns 0 if the instruction completed successfully,
otherwise a string which indicates the reason for the failure. In the latter case, no change has occurred in

any programmer-visible state (R, RAM, main memory, L, T, IR, carry flags, etc.), offering the possibility of
repairing a problem and resuming execution.

Asim maintains the state of the microprocessor in a set of Bepl statics which are available to the user
for inspection. These statics are supposed to capture the entire program-visible state of the Mi Croprocessor,
plus afew useful quantities which are not normally visible from the outside between instructions. The

caller of Asimisfree (but not encouraged) to alter any of Asim’s accessible statics between instructions --
there are no hidden interactions. The accessible statics are documented in Asim.D.

2.1. Errorsdetected

Thefollowing isa (currently) complete list of the strings which Asim will return.
L undefined
T undefined
Branch modifier following TASK
Delayed F1 following TASK
TASK with memory running
ALU output discarded
DNSwith BSHR_
2 memory ops
Memory timing error
Attempt to load R40
Attempt to mask MD
Bad ALUF
MAR_ with R37
STARTIO
Bad F1
Bad F2
Attempt to shift into 2nd R bank
MD_ at wrong time
_MD at wrong time
Odd double fetch not compeatible
MD undefined

2.2. Limitations

Asim only simulates the emulator task.

Cleared version of May 24, 1981
Alto processor simulator September 28, 1978

Thefollowing isalisting of the current contents of Asim.D.

1

/I External definitionsfor Asim

Il last edited September 28, 1978 12:33 PM
1

external /[entry points
[InitAsim /I (altotype[1], extrarom [false], extramemory [false], doublestore[fal se])
Asim // () -> Olerrorstring

external // the microprocessor state
[@ /T
@tu // T undefined flag (true or false)
@ /L
@lu // L undefined flag (true or false)
@ir /IR
@carry // emulator carry (O or 1)
@bus // temp. for bus data
@au [/ temp. for ALU output
@sh // temp. for shifter output
@skip // SKIP (0 or 1)
@aducy //last ALU carry (Oor 1)
@mar /I last memory address
@altbank Il (XM) trueiff last MAR_ selected alternate bank
@mstate // memory state
@marmod // 0 or 1to OR (Alto 1) or XOR (Alto I1) with Mar for next reference
@md // (Alto Il) memory data addressed by MAR
@mdx // (Alto I1) memory data addressed by MAR XOR 1
@mdu // (Alto 1) MD undefined flag (true or false)
@nmod // modifiersfor NEXT
@pc /I (microinstruction) PC
@waiting// TASK, RDRAM, WRTRAM, SWMODE waiting or -1
@ramadr // RAM address

Cleared version of May 24, 1981
Bcepl Runtime Package October 16, 1977 8

Bepl Runtime Package

This package is areplacement for the standard Bepl runtime (the one built into the Alto Operating

System), in which nearly all of the operations have been microprogrammed. Typical Bcpl programs run 25
to 30 percent faster than with the standard routines, depending primarily on their frequency of procedure

calls and their richness in complex structure references. Use of this package also permits one to Junta to
levBasic if desired, for a savings of approximately 500 words of main memory.

The microprogrammed runtime is entirely compatible with the standard one. It does not require programs
to be modified or recompiled, and it works correctly during calls to the Operating System as well asto your
own procedures. The simplest use of this package requires only that you load the necessary microcode into

the Ram and call one initialization routine.

The package also provides a convenient framework in which to define and microprogram additional
emulator opcodes.

1. Standard Use

The simplest case applies when you do not need to include any special microcode of your own. The file
BcplRuntime.Dm is a dump-format file containing Bepl Runtime.Br and Bepl RuntimeMc.Br. These
mogéjl&s should be loaded with your program, along with the LoadRam procedure, available separately as
LoadRam.Br.

Early during initialization, your program should execute the following:

externa [LoadRam; InitBcplRuntime; Ramimage |
if LoadRam(Ramlmage) eq 0 then InitBcpl Runtime()

(LoadRam returns zero if it successfully loaded the Ram and a nonzero result otherwise, e.g., because no
Ram board isinstalled.)

Once this has been done, the space occupied by LoadRam.Br and Bcpl RuntimeM c.Br may be reclaimed.
BcplRuntime.Br must remain resident throughout execution of the program, but it occupies only about 150
words whereas the others consume nearly 3000.

InitBcpl Runtime sets up a’ user finish procedure’ (in the manner described in the O.S. manual, section
3.12), whose purpose is to restore the normal Bcpl runtime routines when the program ’finish’ es for any
reason. Operation of this mechanism is ordinarily invisible; however, there are several situationsin which
the programmer must be aware of its workings.

First, if you execute a Junta and later a CounterJunta, the CounterJunta will itself cause the standard Bepl
runtime to be restored. The later restoration performed by the BeplRuntime package will be redundant
and will do no harm, but the standard (slower) Bcpl runtime will be in use once the CounterJunta has been
executed. Thisis probably unimportant in most applications.

Second, if you Junta away the standard Bcpl runtime routines themselves, you must be careful to perform
initialization in the correct order. In particular, InitBcplRuntime must be called before the Junta and
before any other code that sets up user finish procedures. This ensuresthat at 'finish’ time, the cleanup
procedure in the Bepl Runtime package will be the last user finish procedure executed, immediately before
control returns to the operating system for the final time. If this convention is not followed, a subsequent
call on the Bepl runtime would end up diving into garbage (since InitBcpl Runtime saves and restores only

the runtime statics, not the code).

Cleared version of May 24, 1981

Bcepl Runtime Package October 16, 1977 9
Finally, if you have Bcpl-coded interrupt routines and you have Juntaed away the standard Bcepl runtime,
such interrupts must be disabled before the BeplRuntime cleanup is executed, for the same reason as given
in the previous paragraph. If you use the Bepl Interrupt package to set up such interrupts, this is
performed for you automatically (that is, the Interrupt Package sets up a user finish procedure that turns
off all interrupts enabled by Initializelnterrupt). However, to ensure that the cleanup routines get executed
in asafe order, the call to InitBcplRuntime must precede any call to Initializelnterrupt. (If you wish
interrupts to remain active during the CounterJunta, your program should quit by calling CounterJunta

explicitly before executing 'finish’. Thisisimportant in the case of keyboard interrupts.)

2. Adding Y our Own Microcode

In order to implement additional emulator instructions or install microcode for specia devices, it is

necessary to understand the workings of the package in some detail. If you don’'t want to do those things,

you need read no further.

The source files are contained in the dump-format file BeplRuntimeSource.Dm. It includes, among other

things, the following microcode source files:

BceplRuntimeMc.Mu The top-level microcode source file, which 'includes’ all the others.

EmulatorDefs.Mu Standard label and R-register definitions useful in writing code to be run as part
of the emulator task.

RamTrap.Mu Declarations and code for dispatching al opcodes that trap into the Ram.

GetFrame.Mu Microcode implementing the Bepl runtime’ GetFrame’ and 'Return’
operations.

BceplUtil.Mu Microcode implementing all remaining Bepl runtime operations.

In addition to these files, you need AltoConsts23.Mu (or whatever the current version is), Mu.Run, and

PackMu.Run. The latest (October 11, 1977) version of Mu isrequired.

To add new opcodes, you will need to edit BeplRuntimeMc.Mu and RamTrap.Mu (which should be

renamed to something elsefirst). The changesto BeplRuntimeMc.Mu are trivial: ssimply append "include

statements for each of your own sourcefiles.
RamTrap.Mu contains the following predefinition:

137,40, TrapDispatch,,, GetFrame, Return, Bepl Utility;

Thelabelsin this predefinition correspond to the opcodes #60000, #60400, #61000, #61400, ..., #77400
(atotal of 32). However, several of these cannot be used because their execution does not cause atrap into
the Ram. These are #60000, #60400, #61000, #64400, #65000, #67000, and #77400. The GetFrame,
Return, and Bcpl Utility instructions use #61400, #62000, and #62400. All others are available for your
own use ssimply by adding labels to the predefinition.

When one of these labelsis reached, the Alto isin a clean state (no TASK or memory reference pending),
the accumulators ACO through AC3 contain the values supplied by the emulated program, and IR (the
(I:j)l S_Pegus source) contains the low-order 8 bits of the opcode, which may be used for further dispatch if

esired.

The routine should finish by executing the following sequence of operations:

TASK;
something;
SWMODE;

Cleared version of May 24, 1981

Bcepl Runtime Package October 16, 1977 10
:START,;

Itisessential that the TASK be executed as | ate as possible before the branch to START. The worst-case

path in the Rom microcode beginning at START consists of 19 microinstruction cycles without a TASK. It

has been determined empirically that as few as 3 microinstructions inserted between ' something’ and

"SWMODE' in the above sequence causes Diablo Model 44 disksto get data-late errors. (Alas, itis not

possible to say 'SWMODE, TASK’ in one microinstruction because they are both F1's. In hindsight, it

would have been nice if SWMODE had been implemented in such away asto cause a TASK also.)

BceplUtil.Mu contains three convenient exit points to which opcode emulation routines may branch. The
code for these exit pointsis:

Start0: PC_L;
Startl: L_PC, SWMODE;
Start2: PC L, :START;

One may branch to StartO having just executed 'L new PC, TASK;’, to Start1 having just executed

"TASK; something;’, or to Start2 having just executed ' TASK; something; L_ new PC, SWMODE;'.

Standard R-registers available to the routine are listed in EmulatorDefs.Mu. These are SAD, XREG, XH,

MTEMP, DWAX, and MASK. All except MTEMP are used exclusively by the emulator task and may be
clobbered arbitrarily (the standard Nova emulator in the Rom does not depend on them). MTEMP is
usable by any task but is safe only until the next TASK.

Y ou may need to modify EmulatorDefs.Mu if your microcode defines labelsin low, fixed locations (eq.,
START or the task starting addresses). Note that EmulatorDefs.Mu defines all labels except TRAPL in a
way that does not consume space in the Ram. Y ou may need to change one or more of these (eg.,

START) to ordinary predefinitionsif you intend to define them in the Ram.
The microcode is assembled and turned into a .Br file by means of the commands:

Mu BcplRuntimeMc.Mu
PackMu BceplRuntimeMc.Mb BeplRuntimeMc.Br

The Bepl runtime microcode contained in the package occupies 337 (decimal) microinstruction words.

Cleared version of May 24, 1981

SoftBitBLT May 22, 1978 11
Soft BitBLT
This package contains a single procedure, BitBIt, which emulates the BitBIt instruction in software. It is
not reentrant.
BitBIt(bbt)
bbt points to an even word aligned BBT structure as defined in BitBlt.decl. Seethe Alto hardware

manual for details.

BitBIt does some setup in BCPL and then calls an assembly language procedure to do the work. [t is
distributed asthreefiles:

BitBlt.decl Declarations needed to use the package
BitBItB.bor BCPL setup code
BitBItA.br Assembly language inner loop

Cleared version of May 24, 1981
ByteBIt March 9, 1976 12

ByteBlt -- Fast Byte Block Transfer

This package contains a single procedure, ByteBIt, which transfers an arbitrary block of 8-hit bytes from

one place in memory to another as quickly asis possible without special microcode. The procedure

handles all cases of blocks starting or ending on even or odd byte boundaries and whose lengths are even
or odd. The bulk of each transfer is done using the "blt" instruction if possible and using afast inner loop
(4 instructions per byte) otherwise.

ByteBIt iswritten in assembly language. It isdistributed as AltoByteBIt.br, which is assembled from
AltoByteBlt.asm. It is 107 (decimal) instructions long and calls no external procedures (aside from the
BCPL runtime). A Nova-compatible version of this package is also available (though it works less

efficiently dueto lack of a"blt" instruction).

ByteBIt(DstAdr, DstByte, SrcAdr, SrcByte, ByteCount)

Transfers the block of bytes described by the arguments. Bytes are packed two per word, with the | eft
byte considered to be the first. DstAdr and DstByte specify the destination address of the first byte,
with DstAdr providing a base word address and DstByte specifying the offset of the first byte relative
to that word (0O means the left byte in DstAdr, 1 meansthe right byte in DstAdr, 2 means the left byte
in DstAdr+1, etc). Similarly, SrcAdr and SrcByte specify the source address of the first byte.
ByteCount is the number of bytes to be transferred (must be less than 2°15; zero islega).
No bytes outside of the specified destination block are affected; in particular, if the destination block
begins on aright-hand byte or ends on a left-hand byte, the other byte in the sasme word is not
clobbered. However, the source and destination blocks must not overlap.
ByteBIt achievesits efficiency by checking for three special cases. If the block isvery small (4 bytes or
less), it istransferred by means of arelatively slow byte-at-a-time routine, since the overhead of setting up
for the other, faster cases outweighsthisinefficiency. (However, this caseis still much faster than moving
bytes using aBCPL "for" loop and structure references).
If the source and destination blocks are in phase (i.e., they both start with the left byte or both with the
right), then the entire block, possibly excepting the first and last bytes, is transferred by means of a single
"blt" instruction. Leftover bytes at either end are handled specially.
If the source and destination blocks are out of phase, then the bytes are transferred by means of a 16-
instruction inner loop which reads and writes data in memory two full words at atime, swapping and

masking bytes as required.

Cleared version of May 24, 1981
Command Scanner Package July 14, 1977 13

Command Scanner Package

This package consists of an interactive command scanner and a collection of command interpretation
procedures. Among the important features of this package are:

1. Theediting facilities are fairly sophisticated. One can provide defaults and modify the break
and echo sets on a per-phrase basis. The user is permitted to backspace over phrases that have
already been parsed. Phrases may be interspersed with "noise" text that is retained with the
command line while not logically a part of it.

2. Error recovery and retry facilities are provided by means of some rather tricky BCPL control
Structure.

3. Thepackage is modular, and not all modules necessarily need be loaded. Also, specialized
knowledge about the Alto display is confined to one module, which may be replaced by a
different module that deals with other media such as hardcopy terminals or network streams.

The Command Scanner Package is intended for use in programs with relatively sophisticated needs, and is
fairly large (just the basic command editor and Alto display handling modules together amount to about
1500 words of code). Programmers with simpler needs or tight memory constraints might be better off

using Bruce Pardley’s Simple Dialoging Package.

1. Organization

The package is distributed as a dump-format file CmdScan.dm, which contains the following files:

CmdScan.decl Declarations that may be needed in order to use the package.

CmdScan.br The main control module. This must always be |oaded.

CmdScanEdit.br Editing operations invoked from the main control module. This also
must always be loaded.

CmdScanDisplay.br Operations specific to the Alto environment (display and keyboard).
This or some equivalent module must always be |oaded.

CmdScanTty.br Equivalent operations oriented toward aminimal terminal stream
interface.

CmdScanAux.br Higher-level command interpretation procedures for dealing with such
things as numbers, strings, filenames, and keywords. This module is
required only if itsfacilities are desired.

Keyword.br Primitives to look up and enumerate keywords in a keyword table.
Procedures in this module are called from the CmdScanAux module.

KeywordInit.br Procedures to construct and manipulate keyword tables. This module
may be discarded after all desired keyword tables have been created.

CmdScanOEP.br Declarations of Overlay Entry Points (OEPs) in the CmdScan modules.
Thismoduleis needed only if the CmdScan modules are |oaded into
overlays.

KeywordOEP.br OEP declarations for the Keyword modules.

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 14
The CmdScanAux module requires that the Timer and Context packages also be loaded. If oneis not
using contexts, one may omit the Context package and instead define an external procedure Block() that

just returns immediately.

2. Basic Command Scanner

Command scanning is done within the confines of a Command State (cs) object, which accumulates the
text of acommand and maintains state from one phrase to the next. A command consists of a sequence of
phrases, possibly interspersed with "noise” text not part of any phrase. Each phrase consists of zero or
more non-terminating characters followed by aterminating character.

Editing is done on a phrase-by-phrase basis. For each phrase, the GetPhrase procedureis called to input a
new phrase from the keyboard (terminated by a break character) and append it to the command line.
GetPhrase returns when the terminating character istyped. At this point, the caller may call Gets(cs) to
read the characters of the phrase (using Endofs(cs) to test for end of phrase).

While control isinside GetPhrase, if the user backspaces past the beginning of the current phrase, control
is sent back to an earlier point of interpretation so as to reparse the previous phrase now being editted.
There exists afacility for regaining control when this happens so as to release resources acquired during
command interpretation.

Between phrases, one may output "noise" text by means of Puts(cs). Thistext is displayed and maintained
in the command line but does not participate in editing operations. That is, if one is positioned at the end
of a"noise" string and backspaces one character, the entire "noise" string is erased along with the rea

command character preceding it.

2.1. Getting Phrases

The following procedures are defined in CmdScan.br and CmdScanEdit.br:

InitCmd(maxChars, maxPhrases, WordBreak [DefBreak], PhraseTerminator [DefBreak], Echo [DefEchq],
keyS [keys], dspS [dsp], Erase [DefErase], Error [DefError], zone [sysZone]) = csor 0

Creates and returns a Command State (cs) structure capable of holding at most maxChars characters
grouped into at most maxPhrases phrases. keyS and dspS are the keyboard and display streams for
the command scanner. The structure is alocated from zone. The remaining arguments (all of which
are procedures) control the command scanner in various ways. These procedures are described below
under "Edit Control Procedures”.

When InitCmd is called, it alwaysreturnsacs. However, if the command is deleted (by the user
striking the Delete character) during later command typein, the csis destroyed and InitCmd returns
again with zero asitsresult. Thisisdiscussed below under "Backing Up and Catch Phrases’.

Closes(cs)

Destroys the Command State structure cs, returning it to the zone from which it was allocated.

GetPhrase(cs, WordBreak [default], PhraseTerminator [default], Echo [default], Help [], helpArg[]) =

numChars

Readies the next phrase to be interpreted, inputting one from the keyboard if necessary. Returns the
number of characters in the phrase, not including the terminating character.

The WordBreak, PhraseTerminator, and Echo procedures, if provided, override the ones declared to
InitCmd for this phrase only. If Help is provided then upon typein of a question mark the cal
Help(dspS, helpArg) is executed; thisis expected to output a helpful message to the stream dspS, not
preceded or followed by a carriage return. (Typically the messageisjust a string, which may most

easily be output by providing a Help procedure of Wss and a helpArg of the string itself.)

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 15
Gets(cs) = char
Returns the next character of the current phrase, i.e., the one most recently input by means of
GetPhrase. If the phraseis exhausted (i.e., the next character would be the phrase terminator),

Errors(cs, ecEndOfPhrase) is called.

Endofs(cs) = truelfalse
Returnstrueif the current phrase is exhausted.

Puts(cs, char)
Appends the "noise" character to the command line and outputs it to the command’ s display stream.
Puts should be called only between phrases, i.e., after reading all characters of one phrase and before
calling GetPhrase for the next.

Resets(cs)
Resets the command scanner to the beginning of the current phrase, such that the next call to

GetPhrase will return the same phrase again.

TerminatingChar(cs) = char
Returns the character that terminated the current phrase.

2.2. Default Phrases

DefaultPhrase(cs, string, char [])

Supplies a default value (the string) for the next phrase; that is, the next call to GetPhrase will cause
the text from that string to be returned. The string is appended to the command line and output to
the command display stream. The string should not contain a terminating character.

If char is supplied, it is used as the terminating character and the next call to GetPhrase will return
without giving the user any opportunity to edit the phrase. If char is omitted, the next GetPhrase will
wait for the user to either type aterminating character (in which case the default phrase will be
returned) or provide a replacement phrase followed by aterminating character.

BeginDefaultPhrase(cs)

Begins a default phrase. All occurrences of Puts(cs, char) between callsto BeginDefaultPhrase and
EndDefaultPhrase are included in the default phrase rather than treated as "noise”" characters. This

permits default phrases to be generated by arbitrary stream output.

EndDefaultPhrase(cs, char [])
Ends a default phrase started by BeginDefaultPhrase. If char is supplied, it is used asthe terminating
character, as described above under DefaultPhrase. BeginDefaultPhrase and EndDefaultPhrase must
be paired and there must be no callsto GetPhrase between them.

2.3. Edit Control Procedures

These procedures control the operation of the command scanner in various ways. The procedures are
passed as arguments to InitCmd, and some of them to GetPhrase. The default procedures are all defined
in CmdScanDisplay.br, but the programmer is free to substitute other ones when appropriate.

Thefile CmdScanTty.br is an aternate to CmdScanDisplay.br, but oriented toward a minimal terminal
stream interface. The only operations required are Gets and Resets on the keyboard stream and Puts on
the display stream.
WordBreak(cs, char) = truelfalse
Returnstrueif char isaword break character and false otherwise. This controls the action of the
control-W editing character and has no other effect. The default WordBreak procedure returns true

only for space, escape, and carriage return.

PhraseTerminator(cs, char) = trueffalse

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 16
Returnstrueif char is aphrase terminating character and false otherwise. This controlsthe definition
of aphrase, which is zero or more non-terminating characters followed by aterminating character.

The default PhraseTerminator procedure returns true only for space, escape, and carriage return.

Echo(cs, char) = trueffalse
Returnstrueif char should be echoed when it is typed in and false otherwise. The default Echo
procedure returns true if char is not a phrase terminator and falseif it is (using whatever definition of
phrase terminator is currently in effect).

Erase(cs, first, last, context)

Erases characters cs>>CS.buf>>Buf/first through cs>>CS.buf>>Buflast (inclusive) from the output
stream in whatever manner is appropriate for the medium. Thisinterval may include both real
phrase consituent characters and "noise" characters. Characters that were not echoed (i.e., not
actually sent to the output stream) have #200 added to them and should be ignored.
The context argument indicates the context in which the Erase procedure is being called; this may be
useful in determining the correct action.
eraseChar A single character is being erased. (Itisthe character
¢cs>>CS.buf>>Buf/first; any other characters are "noise".)
eraseWord A word (or phrase) is being erased.
eraseT erminator The terminating character of the current phrase is being erased to
permit additional editing on the phrase.
The default Erase procedure in the CmdScanDisplay modul e erases characters from the Alto display
by means of EraseBits. If it is necessary to erase past the left margin (i.e., past a carriage return or a
line wrap-around), the entire display window is erased and the command line is regenerated, thereby
losing any text displayed before the beginning of the current command line. (Thisis necessary
because the Operating System'’ s display streams package generally does not permit one to manipulate
other than the current display line.)
The default Erase procedure in the CmdScanTty modul e prints a backslash followed by the erased
character in the eraseChar case and a left arrow in the eraseWord case.
Error(cs, ec)
Thisisthe stream error procedure for cs and is called under a variety of exceptional conditions. The
error codes (ec) are defined in CmdScan.decl. Most of them indicate a specific error condition.
However, afew simply request a certain action and are therefore generally useful in client command
parsing routines.
ecCmdDelete (called from GetPhrase) The Delete character has been typed. The Error
procedure should take appropriate action and should not return. The
default Error procedure types "X XX" and forces areturn from the call to
InitCmd with value zero.
ecCmdTooLong The command line buffer isfull and an attempt has been made to
append another character toit. The maximum length isthe maxChars
argument to InitCmd. If the Error procedure returns the excess
character isthrown away. The default Error procedure blinks the
display, resets the keyboard, and returns. (The CmdScanTty module
outputs a bell to the display stream.)
ecTooManyPhrases Attempt to put more than maxPhrases phrases into the command line
(maxPhrasesis passed to InitCmd). Thisisan unrecoverable error, and

the default Error procedure calls SysErr.
ecEndOfPhrase Attempt to read characters past the end of the current phrase (by

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 17

Gets(cs)). If the Error procedure returns, the result value is returned by
Gets. The default Error procedure calls Syskrr.

ecKeyAmbiguous (called from GetK eyword, described later) An ambiguous keyword has
been typed in. The default Error procedure blinks the display, resets the
keyboard, and sends control back to an earlier point of interpretation so
asto permit the user to type in more characters.

ecBackupReplace This and the following error codes are not associated with specific errors
but simply request that a certain action be performed. This one requests
that control be sent back to the beginning of the current phrase to permit
typein of areplacement phrase.

ecBackupAppend Requests that control be sent back to the current phrase to permit the
user to append to or edit it.

ecCmdDestroy Requests that control be sent back to the InitCmd that began this
command, forcing it to return zero. Thisisthe same as ecCmdDelete
except that "XXX" is not typed.

other Any error code not listed above is assumed to be some sort of syntax
error arising from a higher-level command interpreter (such as the ones
in the CmdScanAux module). The default Error procedure handles al
of them in the same way: it displays a question mark, blinks the display,
resets the keyboard, and sends control back to an earlier point of
irﬁerpretation S0 as to permit the user to replace or modify the current
phrase.

The following additional Alto display-specific procedures are defined in CmdScanDisplay.br:

CmdError(cs, string [])
If astring is supplied, outputs it to the command display stream. Then blinks the display window and
issues a Resets operation on the command keyboard stream. (This procedure is also defined in the
CmdScanTty module, but it outputs a bell to the display stream rather than blinking it.)

InvertWindow(ds)

Inverts the polarity of the display streamds. That is, if it is now being displayed black on white,
changes it to white on black or vice versa.

2.4. Backing Up and Catch Phrases

When it becomes necessary to edit a phrase that has already been parsed (i.e., passed to the client program

via GetPhrase and Gets), it is necessary to back up the interpretation of the command lineto an earlier

point so asto permit the modified phrase to be reparsed. This situation arisesin several cases: the user
backspaces past the beginning of the current phrase or deletes the entire command, or a syntax error is
detected and the current phrase or a previous phrase must be replaced or modified.

Rather than requiring GetPhrase and every higher-level procedure that calls GetPhrase to provide a failure
indication (which the caller must then test after every cal), the Command Scanner Package makes use of
some devious control transfer primitives to back up control to an earlier point of interpretation, usualy
without the client program’s being aware of it.

In the simplest case, control is sent all the way back to the call to InitCmd that created the Command State
(cs). InitCmd returns again with the same cs as before, and the entire command line is reparsed by the
client program. Each call to GetPhrase (up to the phrase that is being modified) returns a phrase saved
away in the command state, just asif it had just been typed in. The effects of the command scanner

procedures during a reparse are indistinguishable from those during the initial parse.

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 18
This control structure does have certain consequences that the programmer must be aware of. The first is
that the context of the call to InitCmd must remain valid throughout the lifetime of the cs; that is, the
procedure that called InitCmd must not return until the cs has been destroyed.

Second, the interpretation of a given command line must have constant effects. That is, the result of
reparsing the command must be indistinguishable from the result of parsing it initially--there must be no
incremental or time-dependent variations in interpretation.

There are situations in which resources are allocated during the course of command interpretation, edg.
storage blocks or open files. In some cases, when control is sent to an earlier point of interpretation, it is
necessary to release such resources. The package provides a*catch phrase" mechanism by means of which
the program can regain control so as to perform such cleanup. (The name is borrowed from Mesa, but the

facility is not really very much like the Mesa "signal" and "catch phrase" machinery.)
The catch phrase mechanism is accessed through the following procedures:

EnableCatch(cs) = truelfalse

When this call is encountered during normal interpretation, EnableCatch saves away the current
frame and pc in storage associated with the next phrase (the phrase that will be read by the next call
to GetPhrase). In this context, EnableCatch always returns false.

While interpretation is being backed up, if a phraseis encountered for which an EnableCatch has
been done, control is sent to that point; i.e., EnableCatch returns, but with value true rather than

false. The programmer should write a statement of the form:
if EnableCatch(cs) then [<catch phrase>; EndCatch(cs)]

where <catch phrase> is code that performs the necessary cleanup.

EndCatch(cs)
Should beincluded at the end of every catch phrase. If control is being returned to a point of
interpretation at or after the current phrase, EndCatch simply returns, thereby starting the reparse of
succeeding phrases. However, if control is being sent back to a phrase before the current one,
EndParse resumes the reverse transfer of control. Hence catch phrases are executed in reverse order,
and the backing up of interpretation terminates at the latest catch phrase preceding the first phrase

that must be reparsed.

DisableCatch(cs)
Undoes the effect of a previous EnableCatch for the current phrase. 1t may be issued before or after
the GetPhrase that reads the current phrase. 1t isuseful in situations where resources are alocated
temporarily, across only one call to GetPhrase. Thetypical context is something like:

if EnableCatch(cs) then [<release resources>; EndCatch(cs) |
<allocate resources>

GetPhrase(cs)
<release resources>
DisableCatch(cs)
CmdErrorCode(cs) = ec
If control is being backed up due to an error (including a command delete), this procedure returns
the error code. It the user backspaced past the beginning of a phrase, zero is returned. This
procedure returns a valid result only in the context of a catch phrase.
Asisthe case for InitCmd, the context of every call to EnableCatch must remain valid during subsequent
command interpretation. Effectively this means that calls to EnableCatch must be at the same or

successively increasing depths of procedure calls.

Also, only one catch phrase may be enabled per phrase in the command line. Thecall to EnableCatch
must precede the call to GetPhrase for the particular phrase, though it may either precede or follow a

Cleared version of May 24, 1981

Command Scanner Package July 14, 1977 19
DefaultPhrase providing a default value for that phrase. This restriction makes inclusion of catch phrases
within iterations somewhat tricky, though it is still possible.

A backup of interpretation is normally initiated only from within the Command Scanner Package itself, or
from within an Error procedure called due to a syntax error. However, one may explicitly back up control

by means of one of the following procedures:

BackupPhrase(cs, nPh [0], editControl [editReplace], char [])

Sends control backward nPh phrases relative to the current phrase (the default, zero, means restart
interpretation of the current phrase). Note that BackupPhrase never returns. editControl determines
the disposition of the current phrase, and may have one of the following values:
editNew Discard the phrase and start over. (Thisoption is not usually meaningful in the
context of BackupPhrase, but isin ErasePhrase, described below.)
editAppend Discard the phrase terminator and permit the user to append more characters to
the phrase (or otherwise edit it).
editReplace Discard the phrase terminator. If the first character typed by the user isa non-
terminating, non-editing character, erase the entire phrase and start over
(treating that character as thefirst character of the phrase); if itisan editing
character, permit the user to edit the phrase asit stands; if itisa terminator,

attempt to parse the phrase again with that terminator.

If char isprovided, it is effectively inserted at the front of the command keyboard stream and is used
the next time GetPhrase needs to input a character from the user.

ErasePhrase(cs, nPh [0], editControl [editReplace], char [])
Same as BackupPhrase, but first erases all intervening phrases (both from the command line buffer
and from the display). In this case, the editControl parameter applies to the target phrase rather than
to the current phrase. The target phraseis erased only if editControl is editNew.

3. Auxiliary Command Interpreters

The procedures in the CmdScanA ux module each read a phrase (by calling GetPhrase) and interpret it in
someway. Whilethey are useful in their own right, they also serve as a good model for additional
command interpretation procedures.

In general the procedures return only if successful and call Errors with an appropriate error code
otherwise. As previously explained, the default handling for these errors consists of backing up control to
the beginning of the current phrase and permitting the user to replace or modify the phrase. Also, these
procedures interpret only the phrase itself, not the terminating character. It isthe caller’ s reponsibility to

check the terminator if required.

GetNumber(cs, radix [10]) = number
Returns the next phrase as a number in the specified radix. |f an error occurs, Errors(cs, ec) is caled
with one of the following error codes:

ecEmptyNumber The phrase is empty.

ecNonNumericChar The phrase contains a character that is not adigit in the specified
radix.

ecNumberOverflow The number overflows 16 bits.

GetString(cs, PhraseTerminator [default], Help [], helpArg [], Echo [default]) = string

Cleared version of May 24, 1981
Command Scanner Package July 14, 1977 20

Returns the next phrase asa BCPL string. The optional arguments, if supplied, are passed to
GetPhrase. The string is allocated from the same zone used to create cs.

GetFile(cs, ksType, itemSize, versionControl, hintFp, errRtn, zone, loginfo, disk) = stream
Calls OpenFile on the file whose name is the next phrase. All the arguments after cs are optional and
are defaulted precisely asin OpenFile. If the file cannot be opened, calls Errors(cs, ecCantOpenFile).

Confirm(cs, string []) = truelfalse

Outputs the message "[Confirm]" preceded by the string if supplied. Then inputs a confirmation
character and returnstrueif itis"Y" or carriage return and false if itis"N". Any other (non-editing)
character causes Errors(cs, ecBadConfirmingChar) to be called. (Notethat if Deleteis typed,

Confirm will not return but rather the entire command will be aborted.)

GetKeyword(cs, kt, returnOnFail [falsg], PhraseTerminator [default]) = entry

Looks up the next phrase in the keyword table kt (described later) and returns a pointer to the
corresponding table entry. If the phrase is ambiguous, calls Errors(cs, ecKeyAmbiguous). |f the
phrase is not found, normally calls Errors(cs, ecK eyNotFound); however, if returnOnFail istrue then
returns zero in this case.

If aunique initia substring match occurs and the terminating character has not been echoed, appends
the erder_nai nder of the matching keyword to the command line and to the display asif it had been
typedin.

4. Keyword Package

This portion of the Command Scanner Package implements operations on an object called a Keyword
Table. Itisindependent of the rest of the package and does not make use of any of itsfacilities. However,
the CmdScanAux modul e does require the Keyword Package or some other package implementing
equivalent operations.

The Keyword Package consists of two principal modules. File Keywordinit.br contains procedures to
create and modify a keyword table, while Keyword.br contains procedures to look up keywords and to
enumerate and destroy the table. The reason for this division isto permit one to create all needed keyword
tables at program initialization time and then to discard the code (which accounts for more than half the
total size of the package).

This package requires the StringUtil module of the Strings package, which in turn requires the ByteBIt
package.

All keyword table operations except CreateKeywordTable are actually accessed through the Cdls
mechanism (CallO, Call1, etc.), so aternate implementations of the same interface are possible. In
particular, the CmdScanAux module requires only that the L ookupK eyword and
EnumerateK eywordT able operations be provided.

A keyword table is an ordered set of <key, entry> pairs. The keys are BCPL strings and are maintained in
alphabetical order for efficient lookup. The entries are fixed-length records whose interpretation is not
defined by the package. While the lookup operation is efficient, the insert and del ete operations are not, S0
this package is not suitable for maintaining large dictionaries or symbol tables. Its principal use is

maintaining tables of keywords for applications such as command interpreters.
Procedures contained in the Keywordinit module are:

CreateK eywordTable(maxEntries, lenEntry [1], zone [sysZoneg]) = kt
Creates and returns a keyword table (kt) capable of holding a maximum of maxEntries entries of
lenEntry words each. The keyword table is allocated from the supplied zone and isinitialized to
empty.

Cleared version of May 24, 1981
Command Scanner Package July 14, 1977 21

InsertK eyword(kt, key) = entry

Inserts the supplied key (a BCPL string) into the keyword table kt and returns a pointer to the
corresponding entry, which isinitialized to all zeroes. The key string is copied; storage for the copy is
obtained from the zone passed to CreateKeywordTable. It isthe caller’ s responsibility to
appropriately initialize the contents of the entry. If the keyword table isfull or aduplicate entry is

inserted, SysErr is called.

DeleteKeyword(kt, key)
Deletes the specified key (and its corresponding entry) from the keyword table kt. Itisthe caler's
responsibility to dispose of any allocated objects pointed to by the deleted entry. If thekey is not
present in the table, SysErr is called.

Procedures contained in the Keyword module are:

LookupKeyword(kt, key, IvTableKey []) = entry

Looks up the supplied key in the keyword table kt, returning a pointer to the corresponding entry if
successful and zero if unsuccessful. For a successful lookup, the supplied key must either completely
match akey in the table or be an initial substring of exactly one key. Upper- and lower-case letters
are considered equivalent.

If IvTableKey is supplied, a pointer to the full text of the matching keyword is stored in
@lvTableKey if either a successful match or an ambiguous substring match occurs (zero is stored
otherwise). In the case of an ambiguous substring match, the key stored is the first one that matches.

This string is the one actually kept in the table (not a copy), so the caller must not modify it.

EnumerateK eywordTable(kt, Proc, arg)
Calls Proc(entry, kt, key, arg) for each entry in the keyword table kt. The called procedure may
modify the entry but must not insert or delete keys.

DestroyK eywordTable(kt)
Destroys the keyword table kt, returning the table object and all keys to the zone from which they
were allocated. It isthe caller’sresponsibility to dispose of any allocated objects pointed to by entries
in the table.

Additionally, the following procedure (defined in Keyword.br) may be of interest:
BinarySearch(key, thl, lenThl, Compare) = index

Searches for key in the sorted table thl, which has entries numbered zero to lenThl-1 (inclusive). The
comparison procedure Compare(key, thl, i) is expected to compare key against entry i in the table and
return a negative number if the key is "less than" the entry, zero if "equal”, or a positive number if
"greater than". All knowledge of the format of key and thl is vested in the Compare procedure.

If the requested key is found, BinarySearch returns the index of the matching entry in the table. If
the key isnot found, -i-1 (= not i) is returned, where i is the index of the first entry greater than the

requested one (i.e., the key before which the requested key should be inserted).

Cleared version of May 24, 1981
Context Package May 21, 1977 22

Bepl Context Package

A tiny software package is available that provides facilities for managing multiple execution contexts for
Bcpl procedures. A "context", as used here, isaregion in which some part of aBcpl stack is stored,
including a"resume address" at which execution in the context can be resumed. Contexts may be strung
together on "context lists." Such alist is"called" with CallContextList, which resumes the first context on
thelist until it "Block"s, then resumes the next context on the list, etc. Typically, each context that is
resumed will execute atest to seeif it really has work to do, and if not immediately Block again. Because
running down the list resuming contexts is extremely rapid (the cost of switching between contextsis only
14 instructions), it is feasible to maintain rather large clouds of contextsin this way.

The package also includes an optional, very rudimentary time-slicing scheduler whose purpose is to reduce
the frequency (and hence the cost) of context switches among "active" contexts.

The relevant files are contained in Context.dm. The basic context package consists of files Context.br,
which contains about 50 instructions that must always be resident, and Contextlnit.br, which contains
initialization code that may be discarded after all contexts have been initialized. The optional time-dlicing
scheduler extension consists of ContextSched.br (resident, about 30 instructions), and ContextSchinit.br
(initialization). The sources for these may be found in ContextSource.dm, which also includes a set of
command files and Contextex.Bcpl, the example program given at the end of thiswriteup. A Nova version

of this package is available.

1. Basic Context Package

ctx=InitializeContext(region, length, proc, extraSpace [0])

This procedure initializes a context, using ablock of storage starting at address "region,” of length
"length" for the stack and sundry other information. The "proc" argument specifies a procedure to
call the first time the context is resumed. The optional parameter "extraSpace” allows the context to

contain other information of the user’s choosing.

The result of the procedureisa CTX structure:
struct[ure CTX:

Next word //Pointer to successor context
Stack word //Current stack pointer
StackMin word //Stack limit

user word extraSpace //For user’s purposes
stackAreaword remaining //The stack area

]

The caller is expected to build context lists by chaining through the Next entries. InitializeContext
sets Next to zero. Note that this way of managing context lists is consistent with the conventions used
in the Alto Queue package.

The"caller’sframe" pointer in the first frame of the context isinitialized to zero. This enables
programs that enumerate stacks (e.g., the Overlay package) to know when to stop.

CallContextList(ctx)

This function resumes each context on the list headed by ctx linked through CTX.Next entries. Each
context executes until it calls the procedure Block. When the list is exhausted (a zero Next value
terminates the list), CallContextList returns. CallContextList will never return if thelist islinked into

aring.

Cleared version of May 24, 1981

Context Package May 21, 1977 23

Thefirst time a context is encountered by CallContextList, the procedure given by the "proc"
argument of InitializeContext is called, with the context itself asitsargument. Any other parameters
required to distinguish instances of contexts may be passed as an "extraSpace" block, which begins a
ctx!3.
CallContextList is reentrant, and may be called from within an interrupt. This permits one to have
hierarchies of contexts (with preemptive priority) simply by running all contexts of a given priority at
an appropriate interrupt level (note that the interrupt necessary to cause execution of such contexts
may be either hardware- or software-initiated). Thisisaccomplished most conveniently by means of
the Bepl Interrupt Interface, described separately. Note that contexts running at different priority
levels must protect common data bases and critical sections, whereas contexts at the same level are
free from race conditions so long as they don't call Block from within critical sections.

Block()

Ceases execution of the calling context. Execution resumes the next time the context is encountered
on some list by CallContextList.

If Block is called outside of any context (that is, no call of CallContextList is currently in progress), it
returns immediately.

For debugging purposes, two statics defined in Context.br are of interest: CtxRunning contains the address

of the context currently running, and CtxCaller pointsto the frame for the current invocation of

CadllContextList.

2. Time-Slicing Scheduler Extension

While the cost of switching between contextsis very small, in a system with many contexts the effective
cost of acall to Block may be quite large due to the sheer number of other contexts that are resumed before
control returns from this call to Block. Typically, most contexts are "waiting" rather than "active”; ie.,
they are calling Block from within aloop that iswaiting for some "wakeup" condition to occur. On the
other hand, there are often one or two "active" processes that are performing some useful, long-running

computation. For proper operation of the context package, it is necessary that such processes give up
control reasonably often. But it is clearly wasteful to do so too often.

This extension to the basic context package introduces a new primitive called Yield, which is similar to
Block except that it does not always actually give up control (i.e., sometimesit just returns immediately).

Specifically, if the present context has been executing for less than one time slice, Yield returns
immediately. In thisimplementation, the time slice is between 17 and 34 milliseconds.

Thus, Block and Yield are both procedures for relinquishing control, but with slightly different

interpretations. Block should be called from within wait loops, whereas Yield should be called from within
code that isdoing "useful" computation. In the latter case, if the present context’ s time slice has not

expired, Yield returnsimmediately after executing only three instructions.

The time-slicing scheduler must be initialized by calling InitContextSched(), whose code may subsequently
be discarded. Yield behaves the same as Block until thisinitialization has been performed.

3. Example

The following trivial program initially establishes two contexts and chains them together into one list. One
context (running CommandProc) simply blocks until something istyped on the keyboard, then treats the
typein asacommand. The second waits for an Ethernet message to arrive, and types out "Message

arrived."

Cleared version of May 24, 1981
Context Package May 21, 1977

When the letter "S" is typed to CommandProc, a new context is created to run TimerProc. Each
of aTimerProc context has associated with it an identifying integer N (stored in the extraSpace
Ctx!3) which it prints out at intervals of N seconds.

external [InitializeContext; CallContextList; Block
SerialNumber; Ws; Wns; Gets; Endofs; keys; dsp
InitializeZone; Allocate]

manifest RTC=#430

manifest EPL oc=#600

manifest EICL oc=#604

manifest EI PLoc=#605

manifest ESL oc=#610

manifest SIO=#61004

static [CtxZn; CtxHead; NumTimeProcs=0]

let main() be

let z=vec 10000; CtxZn=z // Zone to alocate contexts from
InitializeZone(CtxZn,10000)

let sl=vec 200

let s2=vec 200

CtxHead=InitializeContext(s1, 200, CommandProc)
let next=InitializeContext(s2, 200, EtherProc)
@CtxHead=next

CallContextList(CtxHead) repeat
]

and CommandProc() be

WS("* n** -l)

while Endofs(keys) do Block() // Block until user types something
let Char=Gets(keys)

switchon Char into

case $S. case $s:

[

Ws("*nStart another TimeProc")

let region=Allocate(CtxZn,200) // Create new context
let ctx=InitializeContext(region,200, TimeProc,1)
NumTimeProcs=NumTimeProcs+1
ctx!3=NumTimeProcs // Parameter for thisinstance
ctx!0=CtxHead; CtxHead=ctx // Link into context list
endcase

casel$Q: case $q: [Ws("Quit"); finish]
default: Ws("?")

] repéat

and TimeProc(Ctx) be

let interval=Ctx!3 // Get interval from context

24

instance
word

Cleared version of May 24, 1981
Context Package May 21, 1977

let f=@RTC+27*interval // That many seconds from now
until (@RTC-f) gr 0 do Block()

Whns(dsp,interval) // Type our interval

] repeat

and EtherProc() be

StartlO(3) //Reset Ether

@ESL oc=Serial Number

let buf=vec 50

@EICLoc=50

@EIPLoc=buf

@EPLoc=0

StartlO(2) /[Start input

until @EPL oc ne 0 do Block()

if (@EPLoc rshift 8) eq 0 then Ws("Message arrived")
repeat

and StartlO(c) be (table [SIO; #1401])(c)

4. Revision History

November 17, 1976: Calling Block() when not in a context is now ano-op rather than giving rise to
crashes; InitializeContext setsthe first frame’'s "caller’ s frame" pointer to zero.

May 21, 1977: Time-slicing extension added; Call ContextL ist speeded up.

25

weird

Cleared version of May 24, 1981
Diablo Printer Package December 11, 1976 26

Diablo Printer Package

This package provides a standard stream interface to the Diablo Printer. The facilities provided are limited

to simulation of a conventional Ascii terminal using afixed-pitch font. The software is derived from a
version of the Diablo primitives used in Bravo, courtesy of Greg Kusnick.

The package consists of asingle binary file, DiabloPrinter.br. The source for this, DiabloPrinter.bcpl, is
included in DiabloPrinter.dm, which also contains a test program, DiabloType.bcpl, which types an
arbitrary text file on the Diablo printer.

Besides using standard operating system facilities, this package makes use of the Context and Timer

packages. If one desires not to include the Context package, it suffices to define an external procedure

Block() that returns immediately.
Thereis only one externally-callable procedure, which works as follows:

CreateDiabl oStream(charWidth [6], charHeight [8], pageWidth [450], pageHeight [528], leftMargin [0],
zone [sysZone]) = dps

Creates a Diablo Printer Stream (dps) using the supplied parameters, all of which are optional.
Width and height arguments are in units of 1/60 and 1/48 inch respectively, and cannot be greater
than 1023. charWidth and charHeight define the width and height of each character, including inter-
character and inter-line spacing. The defaults are appropriate for standard typewheels such as Elite
12. pageWidth and pageHeight define the printing area on each page. The defaults are appropriate
for 7.5 inches wide (assuming haf-inch margins) by 11 inches high (ho margins). With the standard
font size, this permits 75 characters per line and 66 lines per page. leftMargin specifies the position of
the logical left margin relative to the extreme left limit of the carriage (note that |eftMargin is not
included in pageWidth). The zone argument specifies the zone to be used to allocate the stream
structure.

The following operations are defined on a Diablo Printer Stream:

Puts(dps, char)

Prints the specified character. All printing characters (Ascii codes 40-177) are typed with whatever is
in the corresponding position on the typewheel, with the exception of *_" which is printed by
overstriking "-" and "<" (since typewheels tend to have the underline character in this position).
The following non-printing characters (Ascii 0-37) are interpreted to provide the specified functions.
All other non-printing characters are ignored.
15 (return) Returns the carriage to the logical left margin and advances the paper to
the next line.
11 (tab) Positions the carriage to the next multiple of 8 character positions.
10 (backspace) Backs up the carriage by one character position (ignored if already at the
logical Ieft margin).
14 (form feed) Advances the paper to the beginning of the next page. (The beginning of
the first page is defined by where the paper was positioned when

CreateDiabloStream was called).
If the right margin is exceeded, an automatic carriage return is executed.
If a hardware problem is detected, Errors(dps, code) is called, where code is

ecDiabloPrinterNotReady if an operation did not complete within a reasonable time (one second)
and ecDiabloPrinterCheck if the printer reported a"check" error. The default Errors procedure is

Cleared version of May 24, 1981
Diablo Printer Package December 11, 1976 27

SyskErr. If the Errors procedure returns, the operation isretried. Note that the printer must be reset
in order to proceed after a"check” error (see below).

Stateofs(dps) = true or false

Returnstrue if the hardware is reporting that it is ready to execute a new operation. Note that this is
not a guarantee that an attempt to print a character will succeed, since printing a character generaly
involves several successive operations.

Resets(dps) | | o
Resets the printer hardware and restores the carriage to the physical left margin. This operation must
be performed to recover from a"check” error.

Closes(dps)
Destroys the stream. This includes returning the stream structure to the zone from which it was

alocated.

Cleared version of May 24, 1981
DPDIVIDE May 15, 1975 28

32-by-32-bit division routine

There is now an assembly code routine available to compute the quotient and remainder from the division
of one 32-bit 2's complement number by another. Thisisnot atrivial operation (see Knuth, val. 2, pp. 237
ff.). Thecaling sequenceis

flag = DPDIVIDE(numerator, denominator, quotient, remainder)

where each of the four argumentsis a pointer to a 2-word vector containing a 32-bit number (high-order
word first). If overflow would occur, which can happen only when the denominator is zero, DPDIVIDE
returns true and does not affect the quotient or remainder vectors. If no overflow occurs, DPDIVIDE
returns false and stores the appropriate results in the quotient and remainder vectors. The remainder
always has the same sign as the denominator, and its magnitude liesin [0, abs(denominator)); the quotient
is positive if the numerator and denominator have the same sign, negative (if not zero) if they have
different signs. DPDIVIDE takes about 5 to 10 times as long as an ordinary 32-by-16-bit division: it does

NOT use repeated subtraction and shifting.

Cleared version of May 24, 1981

Pup EFTP Package June 3, 1979 29
Pup EFTP Package
The routines described here implement the EFTP protocol, a simple ack-per-packet protocol built on level
1 of Pup. Itiscapable of sending blocks of datareliably through a connection in one direction, with
modest performance and using substantially less code than the Byte Stream Protocol. The EFTP protocol
is used by the EFTP subsystem to send files among machines, by the PSpool system on Maxc and the Alto
programs Bravo and Empress to send files to Press printers, and by gateways to send boot files and update
internal data bases.
The EFTP protocol is documented in <Pup>EFTPSpec.press. The EFTP packageis containedin a dump
file <Alto>EFTPPackage.dm, which contains the following files:
PUpEFTP.decl: a"get" file containing definitions used within the package and sometimes also
needed by clients.

PUupEFTPSend.br: procedures for sending data (SendEFTPBIlock, SendEFTPENd).
PupEFTPReceive.br: procedures for receiving data (ReceiveEFTPBIlock).

PupEFTPCommon.br: procedures needed for both sending and receiving (InitEFT PPackage,
OpenEFTPSoc, CloseEFTPSoc, GetEFTPAbort, SendEFTPAbort).
The source file for these routines are contained in <AltoSource>EFTPSources.dm (along with the sources
for the EFTP subsystem). This documentation assumes you are familiar with the Pup package, and its

supporting environment. All timeouts are in units of 10 milliseconds; atimeout of -1 means infinity.

1. The Routines

InitEFTPPackage(zone)
This procedure is currently ano-op, but may be used in the future, should it become necessary to
initialize and allocate free storage within the package.

OpenEFTPSoc(soc, IclPort [defaulted], frnPort [zeros])

Opens aPup level 1 socket and creates an EFTPSoc. "soc" should point to a block of size
lenEFTPSoc. (The package defines an external static, IEFTPSoc, whose valueis lenEFTPSoc.)
CloseEFTPSoc(soc)

Releases any PBIs held in the EFTP part of soc, and then closes the Pup level 1 socket.

SendEFTPBIock(soc, addr, count, timeout) = byte count or error code

Constructs an EFTP data packet from the information in soc, copys count bytes beginning at addr
into the data part of the Pup, and transmitsit. This routine manages retransmissions, returning
count if the packet is acknowledged within the timeout, or a negative error code if some abnormal

condition occured.

ReceiveEFTPBIlock(soc, addr, timeout) = byte count or error code

Copies the data from the next in-sequence data packet into memory beginning at addr and returns
the number of bytes received (532 max), or a negative error code if some abnormal condition
occured. If timeout is -1, ReceiveEFTPBIlock will wait indefinitely until the next packet is available,
otherwise it will return an error if no packet becomes available within the timeout. If the next in-
sequence packet is an EFTP End, this routine will perform the end sequence and return a byte
count of zero. If the next in-sequence packet is a data packet containing zero data bytes, the routine

discards the packet and waits for the next one (to avoid returning a spurious EFTP End indication.)

Cleared version of May 24, 1981
Pup EFTP Package June 3, 1979 30

ReceiveEFT PPacket(soc, timeout, IvPbi) = byte count or error code

Thisroutineis used in the implementation of ReceiveEFTPBIock, but it may also be called directly.
It waits for the next valid EFTP packet. If the packet isavalid in-sequence data packet,
ReceiveEFT PPacket returns its byte count (as above), and places the pbi containing the packet in
@IvPhi. It isthe responsibility of the caller to release this pbi (using ReleasePBI) after digesting its
contents. In all other cases, the return code is the same as for RecelveEFTPBIock, except that one
more error code, EFTPNotFirstSynch, is possible. In these non-data cases, @IvPbi is not changed.
Aﬁ _zergl-ll?ngtk; data packet is indicated by a zero result, and a non-zero @IvPbi (caller should zZero
thiscdll first.

SendEFTPENd(soc,timeout) = true/false
Initiates an end sequence with the EFTP receiver, managing retransmissions, and returnstrue if the
sequence is completed correctly within the timeout.

GetEFTPADbort(soc) = PBI
Returns a pointer to the most recently received EFTPADbort, should the user want to look at it. If no
abort has been recieved, zero isreturned. The pointer remains valid until the next call of any
procedure in the EFTP package.

SendEFTPAbort(soc, abortCode, abortString)
Builds and transmits an EFTP Abort packet with abortCode and abortString as data.

2. Error Codes

EFTPTimeout = -1
The requested operation did not complete within the timeout specified in the call. Returned by
SendEFTPBIock, ReceiveEFTPBIlock, ReceiveEFT PPacket and SendEFTPENd.

EFTPAbortReceived = -2
An EFTP Abort was received while performing the requested operation. GetEFTPAbort(soc) will
return a pointer to the abort packet. Returned by SendEFTPBIlock, ReceiveEFT PPacket and
ReceiveEFTPBIlock.

EFTPAbortSent = -3
A serious protocol violation was noticed while performing the requested operation. Thereis no
hope of continuing. An EFTP Abort was sent to the other end. Returned by SendEFTPBIock,
ReceiveEFTPBIlock, ReceiveEFT PPacket and SendEFTPENd.

EFTPResetReceived = -4

While waiting for the next in-sequence data packet in an ongoing transfer, a data packet with
sequence number zero was received from the other end. Returned by ReceiveEFTPBlock and
ReceiveEFT PPacket.

EFTPNOotFirstSynch = -5
While waiting for the first in-sequence data packet to begin a transfer, a data packet with a non-zero

sequence number, or an otherwise invalid packet, was received instead. Returned by
ReceiveEFTPPacket only -- ReceiveEFTPBIlock continues to wait for a good packet upon receipt of
this code.

3. Revision history

June 3, 1979

Cleared version of May 24, 1981
Pup EFTP Package June 3, 1979

PUupEFTP module broken into three parts: PUpEFTPSend, PUpEFT PReceive, and PUpEFTPCommon;
"Streams.d" removed from PUpEFTP.decl; IEFTPSoc static added.

31

get

Cleared version of May 24, 1981
Ether Boot January 2, 1978 32

Alto Ethernet Boot Package

The EtherBoot package (file EtherBoot.br) consists of an Alto Ethernet boot loader and a small amount of
additional code enabling a program to terminate execution of itself and boot-load a new program from the
Ethernet.
EtherBoot(bfn, returnOnFail [false], host [0])
Copies asmall (256 word) Ethernet boot loader into low memory and transfers control to it with
"bfn’ (boot file number) as an argument. The loader begins broadcasting "Mayday" messages with
bfn as data, on the local Ethernet. A server that hears this message and has a copy of the boot file
matching bfn will connect to the Alto and send the file by means of the EFTP protocol.
If returnOnFail isfalse or omitted, failure to establish contact with a boot server within about 45
seconds will cause EtherBoot to stop trying and to jump into an infinite loop. A manual boot is
required to recover from this. However, if returnOnFall istrue, EtherBoot will returnin this case.
At the time of the return, pages 0 through 2 will have been clobbered and interrupts will be
dri]_sabled, so the caller must save and restore this state. The following slice of code accomplishes
this:

let saveMem = vec #1400
let MyMoveBlock = MoveBlock
MyMoveBlock(saveMem, 0, #1400)

EtherBoot(bfn, true)
MyMoveBlock(0, saveMem, #427)

MyMoveBlock(#431, sasveMem+#431, #570-#431)
MyMoveBlock(#600, saveM em+#600, #1400-#600)

Enablel nterrupts()

This codeis careful not to overwrite the page 1 cells used to maintain the real time clock (430 and

570-577). The reason for making alocal copy of the MoveBlock static is that statics are usualy

allocated in page 2, which is clobbered by EtherBoot.

If host is supplied and nonzero, EtherBoot will send its boot file request to the specified host (which

must be in the range 1 to #377) rather than broadcasting it.
The boot loader contained in this package is identical to the one invoked when the Alto’ s boot button is
pressed with the <bs> key and zero or more other keys down. However, note that calling EtherBoot differs
from actually booting the Alto in one way: tasks are not reinitialized to run in the Rom, since no hardware
reset is performed.
Mayday servers keep copies of a number of useful programsin boot format (see BuildBoot.tty for how to
create abootable file). For example, the Executive boots DMT from the Ethernet when the Alto disk is
turned off. The association between boot file numbers and boot files may be determined by means of the

NetExec's’Keys command (see the NetExec documentation).

Cleared version of May 24, 1981
EtherRcvr June 21, 1978 33

Ethernet Receiver Exerciser

Diagnostic programs (such as MadTest, DiEx, TriEx, and TFU) often wish to run as many other tasks as
possible to provoke failures caused by inter-task interference. This package runs the Ethernet receiver in
promiscuous mode and copies every packet it hears into an internal buffer. The package consists of one

file, EtherRcvr.br with one external procedure:

EtherRcvr(on) = true or false

If "on’ istrue the Ethernet receiver is setup to receive every packet on the Ether. It returns
trueif the receiver was not on and false if a previous call to EtherRcvr has aready started the
receiver. If "on’ isfalsethe receiver is shut down. It returnstrueif the receiver wason and
falseif it was already off. Packets are read into an internal buffer and discarded. Note that it
is harmless to turn the receiver on when it is already on, or off when it is aready off. To
minimize overhead, EtherRcvr iswritten in Nova assembly language and uses interrupts.
The static etherStatVec points to a4 word statistics vector with the following format:
structure ESV:

[
good word 2 [I# of packets rcvd with good status
bad word 2 /1# of packets rcvd with bad status

]

Cleared version of May 24, 1981

Event Report Server December 26, 1978 34
Pup Event Report Server
This package (file PUpERPServ.br) implements a Pup Event Report Server -- a process that listens for
Event Report packets and writesthem to afile. 1t will run on Altos and Novas, and uses the Pup package
through level 1 (plus the packages that the Pup package uses, in particular the Context package). The
server runs as a context (in the sense of the Context package), and you can start up as many instances of the
server as you wish, each listening on a different socket and writing to adifferent file. To instantiate a
server call
CreateERPServer(zone, ctxQ, port, diskStream)
which will create a server and queue it on’ ctxQ’, getting space from 'zone' (approximately 1000
words). The server will listen on’port’ for event reports and append them to ' diskStream’ (that is, it
will positon diskStream to the end and then start writing event entries). The stream’sitem size

should be a byte (ie open the file charltem).

Stopping a cloud of these serversis accomplished by two statics which the user must define:

quitCount which isincremented for each server started
quitFlag which al serverswatch
Theideaistoinitialize quitFlag to false and quitCount to zero. When finishing, set quitFlag to true and

Block until quitCount goes to zero, then finish. Each server closes its own stream when finishing.

The event file is a sequence of entries with the following format:

entry length in bytes 2 bytes - including these two
event Pup source port 6 bytes
event Pup ID 4 bytes

event Pup contents remaining bytes

Cleared version of May 24, 1981
Event Report February 7, 1977

Event Report

The EventReport package provides a convenient interface to the Pup Event Report protocol (see
Pup documentation el sewhere for details). This protocol is used for logging errors of various kinds
parity errors) and for keeping records of resource utilization (e.g., number of pagesin a printer run).

EventReport(eventV, eventV Length[0], eventPort[ErrorLogAddress], retryCount[3], timeOut[3* 27])
This subroutine reports an event recorded in the vector eventV. The remaining arguments
defaults shown in brackets are): eventV Length, the number of wordsin the event recorded
eventV; eventPort, a pointer to a Port (Pup terminology and format) to which the event should
sent; retryCount, the number of times the transmission will be attempted; and timeOut, the time
await aresponse from each retry before giving up (in units of 1/27 second).

EventReport returns "true” if the event was successfully logged, or "false" if it was unable to log
event (perhaps because the Alto has no Ethernet).

35

relevant
(egq.,

(with

be
to

the

Cleared version of May 24, 1981

FancyTemplate Package January 24, 1978 36
FancyTemplate Package
The Fancy Template package is aglorified, expanded, and slowed-down version of the Template package
by Taft, which in turn was a tightened-up and speeded up version of the Format package by your humble
servant. | hope the iteration has converged.
There are three externally-callable procedures; PutTemplate, PutTemplateWithHelp, and
PutTempStrmWithHelp. It aso has two procedures of interest to a user-supplied "Oracle" procedure:
TemplateGetArg and PutNum. The externally-callable procedures are special cases of
PutTempStrmWithHelp, so we'll begin there.
PutTempStrmWithHelp(Oracle, stream, templateStream, parl, par2, ..., parN)
Copies "templateStream" to "stream”. Each of these must be a Bepl character stream. Within the
template stream may appear zero or more escape sequences of the form:
$ modifiers command
For each of these, the next parameter (starting at "parl") is substituted, with conversion as specified
by the escape sequence. There can be up to 20 parameters.
An escape sequence consists of adollar sign, followed by an optional modifier sequence, followed by
aone- or two-letter command (upper and lower case are equivalent). There should not be any spaces
or other extraneous characters within the escape sequence. A dollar sign may be included literally in
the template by writing "$$".
The defined escape sequences are asfollows. "#' stands for the optional modifier sequence (to be
explained shortly).
$S Treat the parameter as a Bepl string.
$US Treat the parameter as an unpacked string. Thisisavector consisting of a
character count in the first word followed by that number of characters right-
justified in succeeding words.
$C Treat the parameter as asingle right-justified character.
$#D Output the parameter as a decimal integer.
$#0 Output the parameter as an octal integer.
$#X Output the parameter as a hexadecimal integer.
$HB Output the parameter as a binary integer.
$P Treat the parameter as a procedure, passing it the stream and the next parameter
as arguments (hence a $P uses up two of PutTempStrmWithHelp's parameters).
In the case of numeric output commands (namely $D, $O, and $B), a modifier sequence may be
included between the dollar sign and the command. These modifiers further control the
interpretation and formatting of the outpuit.
One kind of modifier isadecima number (of one or more digits). |f present, it specifies the
minimum field width to be used in outputting the number. If the number contains fewer digits than
specified for the field width, then leading fill characters (normally spaces; see below) are supplied.
However, if the number contains more digits than will fit in the field, the width specification is

ignored and as many digits as necessary are printed. The default field width is one.

Cleared version of May 24, 1981
FancyTemplate Package January 24, 1978 37

Other modifiers consist of single letters and are as follows:

U Treat the parameter as an unsigned rather than a signed integer. (Generally one
should invoke this modifier when outputting numbersin octal or binary.)

E Treat the parameter as a double-precision (32-bit) integer (mnemonic
"Extended"). In this case, the argument is a pointer to a two-word vector
containing the integer to be printed, with the high-order 16 bitsin the first word
and the low-order 16 bitsin the second. Double-precision numbers may be
treated as either signed or unsigned.

Fx Use the character "x" for leading fill, when necessary, rather than space.

For example, the escape sequence "$12UEF0O" will output an unsigned, double-precision octal

number, right-justified in a 12-digit field, with leading zeroes printed as zeroes rather than spaces.

PutTempStrmWithHelp will call Oracle(aS) if it encounters an escape sequence it doesn’t understand.
aSisastructure containing the current state, constructed as follows:

structure AS: /l argument structure
[
resultStream word
argsword /I pointer to argument vector
nArgs word /I number of arguments in argument vector

templStreamword ~ // stream containing rest of template

arglndex word /I argslargindex is next arg

char word /I last escape character, the one that caused confusion
radix word /I numeric field (in range[2...16])

width word /I minimum field width

justifyL eft word /I true if left-justified, false otherwise

signed word /I true if signed or packed, falseif unsigned or unpacked
double word /[trueif double precision, false otherwise
fill word /I fill character to replace leading spaces
]
PutTempStrmWithHelp expects Oracle to handl e the escape sequence. Toward this end Oracle can
read characters from templ Stream and write characters to resultStream. It can also call
PutTempStrmWithHelp recursively, or it can call TemplateGetArg(aS) to get the next arg, or
PutNum(aS) to get the next arg and write it as a number according to the parametersin aS.
If Oraclereturnstrue, then all iswell and template processing continues. If not, or if there aren't
enough parameters to fill all the escape sequencesin the template, then SysErr is called.
PutTemplateWithHelp is like PutTempStrmWithHelp, except that it uses aBcpl string for a template
instead of a stream. PutTemplate is like PutTemplateWithHelp but it omits Oracle, internaly supplying

FalsePredicate for an Oracle.

Cleared version of May 24, 1981
File searching package October 29, 1980 38

FindPkg - afast file searching package

This package uses the Alto microinstruction RAM, if available, to search standard Alto files for certain

simple kinds of patterns at very high speed (it normally keeps up with the disk). It iswrittenin Bepl.

Note: this release is incompatible with the previous one in an important way: it uses the Alto Operating

System’s ScanStream facility for scanning the file, rather than the (now defunct) ScanFile package. This
required a change to the way you initialize a search (FindInit, now called FindlnitScan) and the way you
clean up afterwards.

To use FindPkg, one first "compiles' the pattern into specialized microcode which isloaded into the
RAM, or into tables which are interpreted by software if no RAM exists, and then scans as many files as

desired using this microcode. To compile the pattern, call
FindCompile(pattern, chartab[, wildchar, fuzz, outstream, storeproc, regtable, [vTables, zone])

where all the arguments beyond chartab are optional (may be omitted, or supplied as0). The arguments

have the following significance.
Patternis a Bepl string, the pattern being searched for. The search ignores the high-order bit of
charactersin both the file and the pattern. In addition, the following 3 arguments affect how the
pattern isinterpreted. The maximum length of the pattern is the number of Rand S registers
available (see below), rounded down to an even number if necessary.
Chartab is a 200b-word array which specifies how charactersin the file are to be interpreted.
Chartablj specifies how occurrences of the character whose codeisj areto betreated. The possible
contents of each chartab entry are: classSkip, meaning ignore the character completely; classOther,
meaning that the character isto be taken literally; or a code between 0 and 177b inclusive, meaning
that the character isto be treated as though it were that character (which, in turn, must be of
classOther in the table). For example, to cause lower case |etters in the file to be treated as though
they were the corresponding upper case letter, set chartab!$a= $A, etc.
Wildchar is a character whose appearance in the pattern string means "match any character in the
file". For example, if the pattern string is"A?B" and wildchar is $?, any occurrence of A followed
by any character followed by B in the file will be considered an occurrence of the pattern. If
wildchar is not a character code, it isignored, and all charactersin the pattern are taken literally.
Wildchar defaultsto -1 (take the pattern literally).
Fuzz is the number of mismatches between the pattern and the corresponding string in the file that
will betolerated. For example, if the pattern is ABCD, then with fuzz=0, only the string ABCD
in thefile (after interpretation through chartab) will match; with fuzz=1, the strings ABCX,
ABXD, AZCD, or ZBCD would match, and so on. Note that fuzz only appliesto replacement
mismatches, not insertions (e.g. ABXCD), deletions (e.g. ABD), or transpositions (e.g. ABDC).
Fuzz defaultsto O (exact match required).
Outstream, if non-zero, is a character stream on which FindCompile will write alisting of the
microcode it generates. Thisisonly useful for debugging. Outstream defaultsto 0 (no listing).
Storeproc determines what will be done with the microcode. Storeproc=fal se means discard it
(although alisting will still be produced if outstream is non-zero). Storeproc=true means store it
in the RAM for execution. Otherwise, FindCompile calls storeproc(location, insvec) for each
instruction it generates, where insvec is a 2-word vector containing the microinstruction. Storeproc
defaults to true (store for execution).
Regtable is a 4-word bit table that specifies what R and S registers are available for use by the
microcode. These registers must not be used by other tasks, or by the Novainstruction Set,
although they may be used by BitBIt or other Alto-specific instructions. Also, registers 14b
through 16b are assumed usable, and should not appear in the bit table. Regtable defaultsto a
table that lets the microcode use register 17b and registers 41b through 76b, which will

accommodate a 30-character pattern.

Cleared version of May 24, 1981

File searching package October 29, 1980 39
LvTablesisthe address of a cell in which FindCompile will store the address of the table space it
allocates, or 0if it did not need table space. After the search, your program should do something
like

if tables ne O then Free(zone, tables)

where IvTablesis v tables and zone is the zone argument to FindCompile. If IvTables is
defaulted, your program is responsible for finding and freeing the table space some other way (eg.
by providing specia Allocate code for the zone, or by reinitializing the zone, neither of which is
applicable to sysZone).

Zoneisazonein which FindCompile will allocate table space if no RAM isavailable. This space
must remain allocated while doing the actual file search, but can (should) be freed after the search
isfinished. Zone defaultsto sysZone.

Note that the outstream, storeproc, and regtable arguments have rather specialized purposes; the usual call

on FindCompile will only supply pat, chartab, IvTables, and possibly wildchar, fuzz, and zone. The

awkward order of the arguments results from backward compatibility requirements.

FindCompile normally returns zero. If it encounters any difficulties, it returns a string which describes the

difficulty. Thisstring is meant to be printed for the user, not interpreted by the calling program.

After calling FindCompile to load the RAM or set up the tables, one scansfiles as follows. First, create an

ordinary OS disk stream for the file to be searched, using OpenFile, CreateDiskStream, etc. To start

searching thefile, call
FindInitScan(stream, buf, bufsize, fa)

where st is the stream, buf is the address of a buffer of bufsize words, and fais afile address (FA) structure
into which FindPkg will store each time it finds a match. FindInitScan returns an object called a scan
stream gleﬂ:rigtor (SSD), which you need to save for cleaning up. Then to find each match in turn, call

FindNext
FindNext either finds the next match or scans to the end of thefile. Inthe former case, it returnsa non-
negative number that says how many characters of the pattern had been examined before it decided it had
amatch, and stores the disk address, page number, and character position at that time into the fa given to
FindInit. For example, if the pattern is"ABCD" and fuzz=1, then if the file contains ABXD, FindNext
will stop after the D and return 4, whileiif it contains ABCX, it will stop after the C and return 3, since it
knows it has amatch at that point regardless of the next character. If FindNext runs off the end of the file,
it returns -n-1 where n is the number of pagesin the file. Y our program should then call
FinishScanStream(ssd) to clean up the ScanStream data structures, where ssd is the SSD returned by
Fi ngl nitScain; close the disk stream; and call Free (as described above) to release any tables allocated by
FindCompile.

FindPkg consists of 5files:
FindNext.BR, containing the procedures Findlnit and FindNext;
FindNextAsm.BR, containing some assembly language procedures needed by FindNext;
FindCompile.BR, containing the procedure FindCompile;
FindCompMu.BR, containing some Alto microcode needed by FindCompile;
FindPkgDefs.D, a Bepl source file containing the definitions for the character classes.

Cleared version of May 24, 1981

FLOAT December 26, 1977 40
FLOAT

FLOAT isafloating-point package for the Alto, intended for use with BCPL. (It uses standard Alto

microcode -- no special instructions are needed.) A microcoded version is aso available, and is

documented in the last section. There are 32 floating-point accumulators, numbered 0-31. These

accumulators may be loaded, stored, operated on, and tested with the operations provided in this package.

"Storing’ an accumulator means converting it to a 2-word packed format (described below) and storing the

packed form.

In the discussion below, 'ARG’ means: if the 16-bit value is less than the number of accumulators, then use

the contents of the accumulator of that number. Otherwise, the 16-bit value is assumed to be a pointer to a

packed floating-point number.

All of the functions listed below that do not have "==>" after them return their first argument as their

value.

1. Floating point routines

FLD (acnum,arg) Load the specified accumulator from source specified by arg. See
above for adefinition of 'arg’.

FST (acnum, ptr-to-num) Store the contents of the accumulator into a 2-word packed
floating point format. Error if exponent istoo large or small to
fit into the packed representation.

FTR (acnum) ==> integer Truncate the floating point number in the accumul ator and
return the integer value. FTR applied to an accumulator

containing 1.5 is 1; to one containing -1.5 is-1. Error if number
in ac cannot fit in an integer representation.

FLDI (acnum,integer) Load-immediate of an accumulator with the integer contents
(signed 2's complement).

FNEG (acnum) Negate the contents of the accumulator.

FAD (acnum,arg) Add the number in the accumulator to the number specified by
arg and leave the result in the accumulator. See above for a
definition of "arg’.

FSB (acnum,arg) Subtract the number specified by "arg’ from the number in the
accumulator, and leave the result in the accumulator.

FML (acnum,arg) [dso FMP] Multiply the number specified by 'arg’ by the number in the
accumulator, and leave the result in the ac.

FDV (acnum,arg) Divide the contents of the accumulator by the number specified
by arg, and leave the result in the ac. Error if attempt to divide
by zero.

FCM (acnum,arg) ==> integer Compare the number in the ac with the number specified by ag'.
Return

-1IF ARG1 < ARG2

OIF ARGl =ARG2

1IFARG1 > ARG2

Cleared version of May 24, 1981
FLOAT December 26, 1977 41

FSN (acnum) ==> integer Return the sign of the floating point number.
-1if sign negative
Oif valueisexactly O (quick test!)
1if sign positive and number non-zero

FEXP(acnum,increment) Adds'increment’ to the exponent of the specified accumulator.
The exponent is a binary power. Thus
FTR(FEXP(FLDI(1,1),4))=16.

FLDV (acnum,ptr-to-vec) Read the 4-element vector into the internal representation of a
floating point number.

FSTV (acnum,ptr-to-vector) Write the accumulator into the 4-element vector in internal
representation.

2. Double precision fixed point

There are also some functions for dealing with 2-word fixed point numbers. The functions are chosen to
be helpful to DDA scan-converters and the like.

FSTDP(ac,ptr-to-num) Truncates the contents of the floating point ac and stores it into
the specified double-precision number. First word of the
number isthe integer part, second is fraction. Two's
complement. Error if exponent too large.

FLDDP(ac,ptr-to-num) Loads floating point ac from dp number. Same conventions for
integer and fractional part as FSTDP.

DPAD(ab) =>ip aand b are both pointersto dp numbers. Thedp sumis formed,
and stored in a. Result is the integer part of the number.

DPSB(a,b) =>ip Same as DPAD, but subtraction.

DPSHR(a) =>ip Shift a double-precision number right one bit, and return the
integer part.

3. Format of a packed floating point number

structure FP: [
sign bitl //1if negative.
expon bit 8 //excess 128 format (complemented if number <0)
mantissal bit 7 //High order 7 bits of mantissa
mantissa2 bit 16 //Low order 16 bits of mantissa

]

Note this format permits packed numbers to be tested for sign, to be compared (by comparing first words
first), to be tested for zero (first word zero is sufficient), and (with some care) to be complemented.

4. Saving and Restoring Work Area

FLOAT has acompiled-in work areafor storing contents of floating accumulators, etc. The static FPwork

Cleared version of May 24, 1981

FLOAT December 26, 1977 42
pointsto this area. The first word of the area (i.e. FPwork!0) isits length and the second word is the
number of floating point accumulators provided in the area. The routines use whatever pointer is currently
in FPwork for the storage area. Thus, the accumulators may be "saved" and "restored” simply by:

let old=FPwork

let new=vec enough; new!1=old!1 //Copy AC count

FPwork=new

...routines use "new" work area; will not affect "old"

FPwork=old
This mechanism also lets you set up your own area, with any number of accumulators. The length of work
arearequired is 4* (number of accumulators)+constant. (The constant may change when bugs are fixed in
the floating point routines. Asaresult, you should calculate it from the compiled-in work area as follows:
constant_FPwork!0-4* FPwork!1.) It is not essential that the length word (FPwork!0) be exact for the

routines to work.

5. Errors

If you wish to capture errors, put the address of a BCPL subroutine in the static FPerrprint. The routine
will be called with one parameter:

0 Exponent too large -- FTR

1 Exponent too large -- FST

2 Dividing by zero -- FDV

3 Ac number out of range (any routine)

4 Exponent too large -- FSTDP
The result of the error routine is returned as the result of the offending call to the floating point package.

6. Floating point microcode

A microcoded version of the FLOAT package is also available. The microcodeisfrom four to six times
faster than the assembly code. Execution times are about 80 microseconds for multiply and divide, and 40
microseconds for addition and subtraction. The file MicroFloat.DM is a dump-format file containing
MicroFloat.BR and MicroFloatM C.BR. These modules should be loaded with your program, along with
the LoadRam procedure, available separately as LoadRam.BR. The microcode RAM must be |oaded with
the appropriate microcode. Thisis accomplished by calling LoadRam(MicroFloatRamlmage) After this
call, the memory space used for MicroFloatM C.BR and LoadRam.BR can be released. Microfloat.BR
must remain resident, but it only takes up about 60 words. The floating point routines can aso be invoked
as single assembly code instructrions, with op codes 70001 through 70021. The correspondence between
op codes and floating point operations is documented in MicroFloat. ASM.
In contrast to the assembly coded version, the microcode does not allocate any memory work space, and
any number of accumulators may be used. Four words of memory are needed for each accumulator, and
this memory space MUST be provided by the user by calling FPSetup(workArea), where workAreais the
block of memory to be used for mainintaining the ACS, and workAreal 0 is the number of accumulators to
be used. The length of workAreamust be at least (4* numACs)+1 wordslong. The contents of workArea
are not re-iitialized, so that reusing a previously used work areawill have the effect of restoring the values
of the ACsto their previous state. The static FPwork will be set to the current workArea. So, "save" and
"restore” the accumulators by:

let old=FPwork

let new=vec (4* numACs)+1; new!0=numACs

FPSetup(new)

...routines use "new" work area; will not affect "old"

FPSetup(ol d)
Loading the RAM, calling FPSetup, and the (shorter) work areaformat are the only changes from the

assembly coded routines.

Cleared version of May 24, 1981
FORMAT March 31, 1975 43

FORMAT -- An Output Formatting Package

Thefile FORMAT (.SR for BCPL source, .BR for relocatable binary) contains a set of subroutines which
implement a reasonably nice set of output formatting primitives and a reasonably nice protocol for
invoking them. A call of the form

FORMAT(S, F,V1,V2, .., Vn)

will copy the BCPL string F into the BCPL string S, except that items in F delimited by angle brackets (<>)
will beinterpreted as format specifications. For those, the format specification and the next input variable
Vi will determine what will be put into S. The current format specifications are:

<S> ThevariableisaBCPL string and isto be copied into S.

<UPS> Thevariableis an unpacked string (V!0 is the number of charactersand V!1 through
V1(V!0) are the characters) to be copied into S.

<C> Thevariable contains asingle ASCII character, right-justified.

<D> The variableis numeric, and should be represented as signed decimal.

<UD> unsigned decimal.

 ... unsigned octal.

<OCT> ...cccovnee. unsigned octal.

<SB>ceee.. signed octal.

<SOCT>coeuu.e. signed octal.

<BIN> unsigned binary.

In addition, the format specifiers take two optional numeric parameters (numbers represented using BCPL
conventions) which give the minimum length and fill character to be used in the conversion. For example,
<OCT #20 $0> will produce an octal number at least 16 (and, in fact, at most 16) characters long, right-
justified and padded to the left with zeros.
FORMATN isexactly like FORMAT except that by a small subterfuge it suppliesits own local string,
whose address it returns. This string will not change from one call of FORMATN to the next, so that
something like WS(FORMATN("It is<D>.", 1975)) will work perfectly.
Finally, the package includes a concatenation routine. After acall of the form

CONCATENATE(D, S1, S2, ..., Sn)

D will be aBCPL string which is the concatenation of the BCPL strings S1, S2, ..., Sn, in that order.

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 44

Pup File Transfer Protocol Package

This package is a collection of modules implementing the Pup File and Mail Transfer Protocols. The
package is used by the FTP subsystem and the Interim File System.

1. Overview

This document is organized as a general overview followed by descriptions of each of the modulesin the
package. A history of revisions to the package isincluded at the end.

Before beginning the main documentation, some general comments are in order.

a. TheFile Transfer Protocol is (alas) complex; this package requires the Pup package and al of its
supporting packages plus some other packages not specific to Pup. This documentation is less
tutorial than normal Alto package descriptions so you should be prepared to consult its author.

b. This document describes the external program interfaces for a particular implementation of the
File Transfer Protocol, and does not deal with the internal implementation nor the reasons for
design choices in the protocol or the implementation. Before considering the details of this package,
you should read [Maxc]<Pup>FtpSpec.press to get the flavor of how the File Transfer Protocol
works. The <Pup> directory also contains descriptions of the lower level protocols on which FTP is
based. Detailed knowledge of these protocolsis not necessary to use this package, but you must be
familiar with the operation of the Pup package.

c. This package and the protocol are under active development so users should expect modifications
and extensions.

d. Thispackage is designed to run under several operating systems and with several file systems.
Functions are carefuly split into protocol-specific and environment-specific modules. This package

provides the protocol modules; you must write the matching environment-specific modules.

1.1. Organization

The FTP package comesin four modules. Server, User, Utilities, and Property lists. The utility and
property list modules are shared by the User and Server.

The User and Server modules implement their respective halves of the protocol exchanges.

The Property List module generates and parses property lists, filesystem-independent descriptions of files.
When passed between User and Server FTPs through the network byte stream, their form is defined by
protocol as a parenthesized list. When passed between these protocol modules and the user-supplied

modules in a program, they take the form of a data structure defined by this package.

The Utility module contains protocol routines shared by the User and Server modules and some efficient
routines for transferring data between a network stream and a disk stream.

1.2. File Conventions

The FTP package is distributed as file FTPPackage.dm, and contains the following files:

Pup FTP Package

User
FtpUserProt.br
FtpUserProtFile.br
FtpUserProtMail.br

Server
FtpServProt.br
FtpServProtFile.br
FtpServProtMail.br

Property lists
FtpPListProt.br
FtpPListimpl.br
FtpPListInit.br

Utility
FtpULtilB.br
FtpUtilXfer.br
FtpUtilDmpLd.br
FtpUtilCompB.br
FtpUtilCompA.br
FtpUtil A br
FtpUtilInit.br

Definitions
FtpProt.decl

Command files

CompileFtpPackage.cm

DumpFtpPackage.cm
FtpPackage.cm

Cleared version of May 24, 1981

December 25, 1980

User protocol common to file and mail
User file commands
User mail commands

Server protocol common to file and mail
Server file commands
Server mail commands

Property list protocol
Implements a’ standard’ property list
Initialization

Common protocol

Unformatted data transfer
Dump/Load data transfer
Binary compare data transfer
Binary compare data transfer
Assembly-language utility code
Initialization

Protocol parameters and structures

Compilesal files
A list of al binary files
A list of al sourcefiles

All of these modules are swappable, and are broken up into pieces no larger than 1024 words.
whose names end in "init" are initialization code which should be executed once and thrown away.

The source files are kept with the subsystem sources in FTP.dm and are formatted for printing in a
fixed-pitch font such as Gacha8 (use the command ' Empress @FtpPackage.cm@').

1.3. Other Packages

FTPisalevel 3 Pup protocol and this package uses a number of other Alto software packages. As
fileswhose names end in "init" may be discarded after initialization (except ContextInit.br).

Modules

small

aways,

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 46
Pup Package
PupBSPOpenClose PupBSPStreams.br PupBSPProt.br
PupB SPa.br PupBSPBlock.br
PUupRTP.br PUpRTPOpenClose PupDummyGate.br PupRoute.br
Puplb.br Pup1OpenClose PupAlla.br Puplinit.br
PupAlEthb.br PupAlEtha.br PupAlEthinit.br
Context Package
Context.br Contextlnit.br
Interrupt Package
Interrupt.br Interruptinit.br
Queue, Timer, and ByteBL T Packages
AltoQueue.br AltoTimer.br AltoByteBLT.br
Time Package
TimeConvB.br TimeConvA.br Timel O.br
CmdScan Package
Keyword.br Keywordlnit.br
Strings and Template Packages
StringUtil.br Template.br

1.4. Principal Data Structures

The following data structures are of interest to users, and together with the procedures described later,

congtitute the package interface.

PL Property Ligt, isthisimplementation’ s internal representation of the protocol-specified
property list.

FTPI File Transfer Package Interface, contains pointers to the network byte stream, user disk stream,
log stream, the file buffer, and various flags.

FTPSI FTP Server Interface, isavector of user-supplied procedures congtituting the interface
between the protocol and environment-specific Server modules.

FtpCtx FTP Context, is the process-private storage for an instance of aUser or Server FTP. It consists
of an FTPI, and if the processis a Server, an FTPS|. Thisisaconvenient place for the user-
supplied modules to keep process-private data. Y ou can do this by adding items to the FtpCtx
definition and then recompiling everything.

The entire FtpCtx need not befilled in all of thetime. For each group of procedures, the items they

require will be specified. A general description of the contents of the FTPI part of an FtpCtx isin order

here.

bspSoc apointer to a BSP socket open to aremote FTP process.

bspStream apointer to the stream in the above BSP socket. Pup package experts will

recognize that thisis redundant, but it is often convenient and makes the code
clearer.

dspStream apointer to a stream to which this package will output generally useful

information, including copious amounts of debugging information if debugFlag
istrue. The only operation that need be defined is’ Puts'.

debugFlag aboolean. If true, the protocol exchanges for this context are output to

dspStream as text, along with some other useful information. Usethis! It will
save you much head-scratching.

connFlag aboolean. Thisshould be true if bspSoc is open. The package will cooperate in

maintaining this flag, which is valuble when finishing.

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 47

serverFlag aboolean. Thisflag istested by proceduresin the shared modules to determine
whether the caller isa User or Server.

getCmdString apointer to the last string read by the GetCommand procedure in the Utility
module. Commands with string arguments are No, Yes, Version,
MailBoxException, and Comment.

The following items are used by the data transfer routines in the Utility module. The routines are Alto-

specific and in some cases Ftp subsystem-specific, so these items need not be filled in if you do not use the

routines.

diskStream apointer to adisk stream. It should always be opened in byte mode.

buffer apointer to ablock of memory which can be used for block transfer 1/0
operations. The bigger thisis the faster things will go.

bufferLength the length in words of the above buffer.

byteCnt the number of bytestransferred is|eft here by the transfer routine.

bitsPerSec the speed of atranfer isleft here by the transfer routine.

1.5. Programming Conventions

This package can be used with the Bepl Overlay package. File FtpOEPInit.br contains a procedure which
will help do this, but you should consult with the author.

This package does alot of string manipulation, and uses the following conventions:
a. All strings are allocated from ' sysZone'.

b. Strings are represented in data structures (such as property lists) as addresses. Zero means no
string is present.

All of the procedures in this package expect to execute in contexts (in the sense of the Context package),
and expect CtxRunning (defined by the Context package) to point to an appropriately filled in FtpCtx.

1.6. Property Lists

In most contexts, there are two property lists: one generated by the client of the package, and one
generated by the package. A client-generated property list isreferredto asa’localPL’, and it isthe client’s
responsibility to freeit when it is no longer needed. Property lists created by this package are referred to as
’qemotePLs’ since they are copies of property lists generated remotely; they should never be freed by the
client.

2. Server

The FTP Server module consists of three files: FtpServProt.br, routines common to the file and mail
servers, FtpServProtFile.br, file commands, and FtpServProtMail.br, mail commands. The server module

has one public procedure:

FtpServProt(timeout)
which carrys out protocol commands received over bspStream by calling the user-supplied
proceduresin FTPSI. When the BSP connection is closed by the remote User process, this

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 48
procedure returns. FtpServProt passes'timeout’ to GetCommand (in the utility module) when
waiting for top-level commands (retrieve, store, delete, etc.). This permits the server to break

connections that don’t seem to be doing anything.

This module uses the following fields in FtpCtx: dspStream, bspStream, bspSoc, and FTPSI. The manifest

constant MTP in FtpProt.decl conditionally compiles calls on the MTP commands. The package is
released with this switch false, since | expect only IFSwill need it. All of the FTP commands (Version,
Store, Retrieve, etc.) must contain procedures (except the MTP onesif the MTP switch isfalse). If you do

not wish to implement a command, it is sufficient to point the command at:
and NY (nil, nil) = valof

FTPM(markNo, 1, "Unimplemented Command")
resultisfalse

in which case any subsidiary procedures for that command (such as StoreFile and StoreCleanup for the
Store command) need not be filled in. FTPM is described in more detail below.

2.1. Version Command

By convention, Version is the first command exchanged over a newly opened FTP connection. The User

sendsits protocol version number and a string such as "Maxc Pup Ftp User 1.04 19-Mar-77". When

FtpServProt receives this command, it replys with its protocol version number and then calls
(CtxRunning>>FtpCtx.V ersion)(bspStream, nil)

which should generate some herald text:

Wss(CtxRunning>>FtpCtx.bspStream, "Alto Pup FTP Server 1.13 14-May-77")

2.2. Retrieve Command

When the remote FTP User process sends the command ' Retrieve’ and a property list describing the files it
wants to retrieve, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Retrieve)(remotePL, local PL)

which should decide whether to accept the command. Retrieve' s decision may involve checking
passwords, looking up files, and other actions using the information in remotePL plus other environment-
specific information, such as whether the requester has the correct capabilities, etc. To refusethe request,

Retrieve should call
FTPM(markNo, code, string)

and return false. To accept the command, it should return anew property list, local PL, describing a file
matching remotePL which Retrieve iswilling to send. FtpServProt returns this PL to you as’localPL’ in
the next call to Retrieve, so that you can freeit. On thefirst call, localPL will be zero. Some FTP
implementations require a minimum set of properties here, but the whole subject of who should specify
what propertiesis rather involved and beyond the scope of this description. For more information, consult
the FTP specification. This package provides afast procedure (in the Utility module) for deciding the
"type’ of afile (text or binary) which you may find useful.

Property listsin retrieve requests may specify multiple files, so FtpServProt will continue to call Retrieve
until it returns false (no more files). On each call, remotePL will be the same original PL sent from the

remote User, and local PL will bethe last PL returned by Retrieve. If Retrieve supports multiple file

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 49
requests then it must save some information so that the next time FtpServProt callsit, it can generate the
next file. If Retrieve does not support multiple file requests then it should do its thing during the first call
and remember that it isfinished. The next timeit iscalled it should return false having only deallocated
localPL (it should not call FTPM).

If Retrievereturns a PL, FtpServProt sends it back to the User to more fully describe thefile. At this point
the User may back out of the transfer, in which case the next procedure will be skipped, and
RetrieveCleanup will be called immediately. If the User indicates awillingness to proceed, FtpServProt
then calls

(CtxRunning>>FtpCtx.RetrieveFile)(local PL, remotePL)
to transfer the filedata. This package provides a procedure (in the Utility module) for transferring data
from a disk Stream to a BSP Stream, but you are free write your own. When RetrieveFile has finished the
transfer, it should return true if everything went OK. If something bad happened, it should call

FTPM(markNo, code, string)
and return false. In any case, FtpServProt calls

(CtxRunning>>FtpCtx.RetrieveCleanup)(loca PL, ok, remotePL)
where ok’ isfaseif RetrieveFile returned false or the User backed out of the command. Note that if
Retrieve returned true, RetrieveCleanup will always be called, but RetrieveFile may not. If Retrieve
allocates any resources (such as opening afile) they should be deallocated here.

Finally, FtpServProt calls Retrieve again, and the process repeats until Retrieve returns false.

2.3. Store Command

When the remote FTP User process sends the command ' newStore’ followed by a property list describing
the file, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Store)(remotePL)

which should decide whether to accept the command. To accept, Store should return a property list
(referred to aslocal PL below) specifying the destination file (local PL will be passed to StoreCleanup so
you can freeit). To refuse the command Store should call FTPM(markNo, code, string) and return false,

in which case the next procedure (StoreFile) is not called.
If Store returnstrue, FtpServProt sends the PL to the User and then calls
(CtxRunning>>FtpCtx.StoreFile)(remotePL, local PL)
to transfer the filedata. This package provides a procedure (in the Utility module) for transferring data
from a BSP Stream to a disk Stream, but you may write your own. When StoreFile has finished the
transfer, it should return true if everything went OK. If something bad happened, it should call
FTPM(markNo, code, string)
and return false. Finaly, FtpServProt calls

(CtxRunning>>FtpCtx.StoreCleanup) (remotePL, ok, localPL)

where ok’ istrueif StoreFile returned true and the User indicated that everything went ok. If "ok’ is false,
StoreCleanup should delete thefile, since it is almost certainly damaged. Notethat if Store returned true,
StoreCleanup will aways be called, but StoreFile may not. If Store allocates any resources (such as

opening afile) they should be deallocated here.

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 50

2.4. Delete Command

When the remote FTP User process sends the command ' Delete’ followed by a property list describing the
fileswhich it wants to delete, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Delete) (remotePL, localPL)

which should decide whether to accept the command. Don’t delete anything yet! The User may still back
out. To refuse the delete request, Delete should call FTPM (markNo, code, string) and return false. To
accept the command, it should return anew PL with every property it can find, so that the User can be sure
of the identity of file to be deleted. FtpServProt will return thisPL as’localPL’ in the next call to Delete,

so that it can be deallocted.

Property listsin delete requests may specify multiple files, so FtpServProt will continue to call Delete until

it returnsfalse. On each call, remotePL will be the same original PL sent from the remote User, and
localPL will bethelast PL returned by Delete. If Delete supports multiple file requests then it must save
some information so that the next time FtpServProt callsit, it can generate the PL for the next file. If
Delete does not support multiple file requests then it should do its thing during the first call and remember

that it isfinished. The next timeitis called it should return false having only deallocated local PL (it should
not call FTPM).

If Deletereturnsa PL, FtpServProt sendsit back to the User and waits for confirmation. If the User still
wants to delete the file, FtpServProt cals

(CtxRunning>>FtpCtx.DeleteFile)(local PL, remotePL)
which should delete the file and return true. 1f something goes wrong, it should call
FTPM(markNo, code, string)
?;céereturn fase. Finaly, FtpServProtFile calls Delete again, and the process repeats until Delete returns

2.5. Directory Command

When the remote FTP User process sends the command ' Directory’ followed by a property list naming the
files about which it wants information, FtpServProt parses the property lists and calls

(CtxRunning>>FtpCtx.Directory)(remotePL , local PL)

which should decide whether to accept the command. To refuse the request (because for example the
requestor does not have the correct access capabilities) Directory should call FTPM (markNo, code, string)
and return false. To accept the command it should return a PL describing afile.

Property listsin directory requests may specify multiple files, so FtpServProt will continue to call Directory
until it returnsfalse. If Directory supports multiple file requests then it must save some information so that
the next time FtpServProt callsit, it can generate the PL for the next file. If Directory does not support
multiple file requests then it should do its thing during the first call and remember that it is finished. The

next timeit iscalled it should return false having only deallocated local PL (it should not call FTPM).

2.6. Rename Command

When the remote FTP User process sends the command ' Rename’ followed by two property lists
describing the old and new files, FtpServProt parses the property lists and calls

(CtxRunning>>FtpCtx.Rename)(oldPL, newPL)

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 51
which should decide whether to accept the command. The FTP protocol does not require that user access
information be present in newPL, so access checking should be done on oldPl only. To refuse the rename
request, Rename should call FTPM (markNo, code, string) and return false. Otherwise it should rename

the file returning true if successful. If the rename operation fails, Rename should call
FTPM(markNo, code, string)

and return false.

2.7. Mail Protocol

File FtpServProtMail.br implements the server part of the Mail Transfer Protocol. This description
ignores various critical sections and other vital considerations which must be handled by the user-supplied
routines in order to provide areliable mail service. For the semantics of the protocol See

[Maxc]<Pup>Mail Transfer.press.

2.8. StoreMail Command

When the remote FTP User process sends the command ' StoreMail’, FtpServProt parses the property lists
which follow and for each one calls

(CtxRunning>>FtpCtx.StoreMail)(remotePL)

which should return true or false. Returning true has nothing to do with whether the mailbox is valid, it
just indicates that the command exchange may continue. |f the mailbox isinvalid, StoreMail should call
FTPM(markMailboxException, code, string) and return true. Returning false terminates the exchange:

StoreMailFileis skipped and StoreMailCleanup is called. StoreMail is called with azero PL the last time
so that it may reply No and return false if none of the mailboxes are valid.

I{1 Storajell\/lail awaysreturnstrue, FtpServProt tells the User process to go ahead and send the mail, and
then calls

(CtxRunning>>FtpCtx.StoreMailM essage)()

to transfer the file data. When StoreMai M essage has finished the transfer, it should return true if
everything went OK. If something went wrong, it should call

FTPM(markNo, code, string)
and return false. Finally, FtpServProt calls
(CtxRunning>>FtpCtx.StoreMail Cleanup)(ok)
where ok’ istrueif StoreMailMessage returned true and the remote User indicated that everything went
ok. If "ok’ isfalse, StoreMailCleanup should not deliver the mail. Notethat if StoreMail is ever called,

StoreMailCleanup is aways called, but StoreMailMessage may not be. If StoreMail allocates any resources
(such as opening afile) they should be deallocated here.

2.9. RetrieveMail Command

When the remote FTP User process sends the command RetrieveMail followed by a property list
describing the mailbox, FtpServProt parses the property list into 'remotePList” and then enters aloop:

First FtpServProt cals
(CtxRunning>>FtpCtx.RetrieveMail)(remotePL, local PL)

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 52
which should return a PL describing the next message in the mailbox. If there are no more
unread messages in the mailbox, RetrieveMail should return zero. On each call, remotePL is
the same original PL sent from the remote User, and localPL isthe last PL returned by
RetrieveMail, which should be freed by the client. On thefirst call localPL is zero. If

RetrieveMail returnsa PL, FtpServProt calls.
(CtxRunning>>FtpCtx.RetrieveMail M essage) (remotePL , local PL)

which should transfer the file and return true. 1f something goes wrong, it should call
FTPM(markNo, code string) and return false.

Finally, FtpServProt calls
(CtxRunning>>FtpCtx.RetrieveMail Cleanup)(remotePL, ok).
If "ok’ istrue, then RetrieveMail Cleanup should flush the mailbox. If this operation fails,

RetrieveMail Cleanup should call FTPM(markNo, code, string) and return false, otherwise it should return
true. If any resouces were allocated during the command, they should be deall ocated here.

3. User

The FTP User module (files FtpUserProt.br, FtpUserProtFile.br, and FtpUserProtMail.br) implements
the User protocol exchanges.

Many of the proceduresin this module report results by returning aword containing an FTP mark code in
the right byte and a subcode in the left byte (referred to below as’ subcode,,mark’). Marks and subcodes
are thefirst two arguments to the FTPM procedure which is described in more detail in the Utility section.
If the mark typeis'markNo’, the subcode describes the reason why the Server refused; your modules may
be able to fix the problem and retry the command. The package will output to dspStream text

accompanying No, Version, and Comment marks.

3.1. Common User Protocol

File FtpUserProt.bcpl contains routines shared by FtpUserProtFile.br and FtpUserProtMail.br. 1t uses the
bspStream, bspSoc, and dspStream fieldsin its FtpCtx and contains the following external procedures:

UserOpen(Version) = truelfalse
UserOpen should be called after the BSP Connection is open. It sends aversion command and aborts
the connection returning false if the Server’s protocol isincompatible. Otherwiseit calls
Version(stream, nil)
which should generate some herald text:
Wss(stream, "Alto Pup FTP User 1.13, 4 June 78").
The herald string received from the Server is output to dspStream.

UserClose(abortlt)
UserClose closes the FTP connection, aborting it if "abortlt’ istrue.

UserFlushEOC() = truelfalse
flushes bspStream up to the next command, and returnstrue if it is EndOfCommand. If the stream
closes or times out, it returnsfalse. It calls UserProtocol Error if it encounters anything except an
EOC.

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 53

UserGetY esNo(flushEOC) = subcode,, mark

flushes bspStream up to the next command, which must be’Yes' or '"No’. If flushEOC istrue, it then
calls UserFlushEOC and returns the Y es or No mark and accompanying subCode. If the stream
closes or times out, it returnsfalse. UserGetY esNo calls UserProtocol Error if it encounters anything

except Yes or No followed by EOC.

UserProtocol Error()
Writes an error message to dspStream and then calls UserClose to abort the connection.

3.2. User File Operations

File FtpUserProtFile.br implements the User protocol for standard file operations. It usesthe bspStream,
bspSoc, and dspStream fields in its FtpCtx and contains the following external procedures:

UserStore(locall, StoreFile) = subcode,,mark

Attempts to send the file described by "localL’ to the remote Server, calling the user-supplied
procedure’ StoreFile’ to transfer the data. It returns zero if something catastrophic happens (such as
the Server aborts the connection), in which case retrying is probably futile.

UserStore sends PL to the Server for approval. The Server can refuse the command at this point, in
which case UserStore returns subcode, markNo. If the Server accepts the command, it returns a PL

(remotePL) specifying the destination file, and UserStore calls
StoreFile(localL, remotePL)

which should transfer the file data. This package provides procedures for transferring data from a
disk stream to a network stream, but you are free to write your own. StoreFile should return true if
the transfer went successfully. If some environment-specific thing goes wrong (such as an
unrecoverable disk error), StoreFile should call FTPM(markNo, code, string, true) and return false.
UserStore then asks the Server if the transfer went successfully and returns subcode,,mark. If mark is

"markYes', thefile arrived at the Server safely.
UserRetrieve(local PL, Retrieve) = subcode, mark

Attempts to retrieve the file described by local PL from the remote Server, caling the user-supplied
procedure’ RetrieveFile to transfer the data. UserRetrieve returns zero if some catastrophic error
occurs, markNo if the Server refuses the command, and markEndOf Command if the everything goes
OK.
UserRetrieve sends localPL to the Server and waits for approval. The Server can refuse the
command at this point, in which case UserRetieve returns subcode,,markNo. If the Server can
handle property lists that specify multiple files, then the following steps are taken for each file:
If the Server has no more files matching localPL, UserRetrieve returns
subcode,,markEndOf Command (subcode is undefined in this case). Otherwise the Server
sends afully-specified property list describing afile which it iswilling to send. UserRetrieve

parses this into remotePL and calls

Retrieve(remotePL, localPL)

which should decide whether to accept the file. To skip the file, Retrieve should return false.
UserRetrieve so informs the Server and then loops. To accept the file, Retrieve should return
aprocedure which UserRetrieve can call to transfer the data. Don’t open the file yet, because
the Server can still back out, in which case UserRetrieve skips the next step and just loops. If

Retrieve returns true, UserRetrieve tells the Server to send the file and then calls
RetrieveFile(remotePL, localPL)

which should open the file, transfer the data, and close thefile. This package contains

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 54
procedures for transferring data from a network stream to a disk stream, but you are free to
write your own. When RetrieveFileis done, it should return true if everything went OK, or
false after calling FTPM(markNo, code, string) if something went wrong. UserRetrieve then
loops.

UserDelete(localPL, Delete) = subcode,,mark

Requests the remote Server to delete the files described by localPL, calling the user-supplied
procedure DeleteFile before allowing the server to actually delete anything. UserDelete returns zero
If some catastrophic error occurs, markNo if the Server refuses the command, and
markEndOfCommand if the everything goes OK.
UserDelete sends local PL to the Server and waits for approval. The Server can refuse the command
at this point, in which case UserDel ete returns subcode, markNo. |f the Server can handle property
lists that specify multiple files, then the following steps are taken for each file:
If the Server has no more files matching the original pList, UserDelete returns
subcode,, markEndOfCommand. Otherwise the Server sends a fully-specified property list
describing afile which it iswilling to delete. UserDelete parses thisinto remotePL and calls
Delete(remotePL, localPL)
which should return true to confirm deleting the file described by remotePL. UserDelete
passes this answer on to the Server and then loops.

UserDirectory(localPL, Directory) = subcode,, mark

Requests the remote Server to describe in as much detail asit can files matching localPL, and then
calls the user-supplied procedure Directory when the answers come back.
UserDirectory sends localPL to the Server and waits for an answer. The Server can refuse the
command at this point, in which case UserDirectory returns subcode,,markNo. If the Server can
handle property lists that specify multiple files, then the following steps are taken for each file:

If the Server has no more files matching local PL, UserDirectory returns

subcode,,markEndOf Command. Otherwise the Server sends a property list which

UserDirectory parsesinto remotePL and calls

Directory(remotePL, localPL)

and then loops.

3.3. User Mail Operations

File FtpUserProtMail.br implements the user part of the Mail Transfer Protocol. This description ignores

various critical sections and other vital considerations which must be handled by the user-supplied routines

in order to provide areliable mail service. For the semantics of the protocol see <Pup>Mail Transfer.ears.

UserStoreMail (pListGen, ExcpHandler, Xfer)

Attempts to send mail to the mailboxes described by the pLists generated by pListGen. It returns
zero if something catastrophic happens (such as the Server aborts the connection), in which case
retrying is probably futile.

UserStoreMail repeatedly calls the client-supplied procedure pListGen which should supply a pList
describing arecipient of the message. When the last recipient has been generated, pListGen should
return zero. The Server can refuse the command at this point, in which case UserStoreMail returns
subcode,markNo. If the Server accepts the command, it may still object to some of the mailboxes, in

which case UserStoreMail calls the client-supplied procedure
ExcpHandler(subcode, index)

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980

which should record the recipient asrejected. Recipients are numbered from one, in the order
which they were generated by pListGen. Index isthe number of the rejected recipient. A
describing why the recipient was rejected isin FtpCtx.getCmdString.

55

in
string

If after rejecting any recipients, there are still some valid ones, UserStoreMail callsthe client-supplied

procedure
Xfer()
which should transfer the message text. Xfer should return trueif the transfer went successfully.

If

some environment-specific thing goes wrong (such as an unrecoverable disk error), Xfer should call
FTPM(markNo, code, string, true) before returning false. UserStoreMail then asks the Server if the
transfer went successfully. The server can reject some more recipients at this point, in which case
UserStoreMail calls the client-supplied procedure ExcpHandler again. Finally UserStoreMail returns
subcode,mark. If mark is’markYes', the mail arrived at the Server safely.

UserRetrieveMail (pList, RetrieveMail) = subCode,,mark
Attempts to retrieve the contents of the mailbox described by ’pList’ from the remote Server, caling
the user-supplied procedure ' RetrieveMail’ to transfer the data. UserRetrieveMail returns zero if
some catastrophic error occurs, markNo if the Server refuses the command, and
markEndOf Command if the everything goes OK.
UserRetrieveMail sends pList to the Server and waits for approval. The Server can refuse the
command at this point, in which case UserRetieveMail returns subcode,,markNo. Otherwise
UserRetrieveMail calls

RetrieveMail (pList)

which should transfer the file data. When RetrieveMail is done, it should return true if everything
went OK.

4. Utility Routines

The utility module (files FtpUtilB.br, FtpUtilA.br, FtpUtilXfer, FtpUtilDmpLd, and FtpUtilInit.br)

contains protocol routines shared by the User and Server modules, and some routines for efficiently

manipulating disk streams.

InitFtpUtil()
builds some internal tables and streams, getting space from sysZone. Y ou must cal this procedure
before starting a Server or issuing any User commands.

FTPM(mark, subCode [0Q], string [], eoc [false], parO, parl, par2, par3, pard)
sends the FTP command 'mark’ to the remote FTP process, including ' subCode' if the command
requires one, and 'string’ if oneispresent. Then, if 'eoc’ istrue, an EOC command is sent. ' String’ is
written to bspStream using the Template package, and may contain imbedded format information.
"Par0’ through 'par4’ are passed as arguments to the PutTemplate call. The subcode and string
arguments further explain certain commands. For markNo, subCodeisa machine-readable
explanation of why arequest was refused, and ' String’ is human-readable text such as "UserName
and Password required”. Codes are tabulated in an appendix to <Pup>FtpSpec.ears. New codes may
be registered on request.

GetCommand(timeout [-1]) = subCode,, mark
flushes bspStream up to the next command and returns the mark and subcode (if any). Returns fase
if the stream closes or it hangs for 'timeout’ miliseconds while waiting for a byte (the default, -1, waits
forever). Comment commands areignored. GetCommand writes the strings accompanying Version,

No, and Comment commands to dspStream and stores a pointer to them in FtpCtx.getCmdString.

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 56
The utility module makes three’ process-relative streams’ for use by the rest of the package. The only
operation defined is’ Puts'.

Ist writes to dspStream

dis writes to dspStream if debugFlag istrue

dbls writes to bspStream and if debugFlag to dspStream
For example, Wss(dls,string) writes'string’ to the running process' dspStream if the process’ debugFlag is
Set.

4.1. Unformatted Data Transfer

File FtpUtilXfer.br contains procedures for performing efficient operations on Alto OS disk Streams.
They use the following fieldsin FtpCtx: bspSoc, bspStream, dspStream, diskStream, buffer, bufferLength,
byteCnt, and bitsPerSec.

DiskToNet(remotePL, localPL) = trueffalse
Transfers bytes from diskStream to bspStream up to end-of-file, and returns true if everything went
OK. CadllsPrintBegin and PrintEnd, below.

NetToDisk(remotePL, localPL) = trueffalse
Transfers bytes from bspStream to diskStream until it encounters another FTP command returning
true if everything went OK. Calls PrintBegin and PrintEnd, below.

FileType() = Text|Binary
Resets diskStream, scansit looking for high order bits on, and then Resets it again. As soon as it
encounters a byte with the high order bit on, it returns’Binary’, otherwise (having read the entire file)
it returns’ Text'.

PrintBegin(remotePL, localPL)
Outputs the server filename in remotePL and the type and byte size from localPL to dspStream.

PrintEnd(remotePL, local PL) Outputs the byteCnt and bitsPerSec fields from the FtpCtx.

4.2. Dump Format Data Transfer

File FtpUtilDmpL d.br contains procedures for transferring data between a disk and an FTP connection in
dump format. They may be used as the inner loops of user-supplied data transfer procedures passed to
UserStore and UserRetrieve and will create and unbundle dump-format files on the fly. If you don't want
to handle dump format, you don’'t need thisfile. Dump-file format is described in an appendix to the Alto

Executive documentation.

These procedures use the same fields in FtpCtx and the same Alto OS routines as the unformatted transfer
routines. Buffer must be at least 130 words long. Making it longer does not speed up the transfer.

DumpToNet(remotePL, localPL) = truelfalse

Moves afile from diskStream to bspStream converting it to dump format, returning trueif things go
OK. Thefilename istaken from the name-body field of localPL, and the creation date from the
g{)eation datefield. Toterminate adump file, call DumpToNet with remotePL = 0. Calls PrintEnd,
ove.
L oadFromNet(remotePL, localPL) = trueffalse
Moves afile from bspStream to diskStream converting it from dump format, returning false when it
encounters an "end block’. When it encounters afile, it returns true with the filename and creation
datein remotePL. If the client wants the file, he should call LoadFromNet again with

FtpCtx.diskStream non zero; to skip afile set diskStream to zero.

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 57

4.3. Binary Compare Data Transfer

Files FtpUtilCompB.br and FtpUtilCompA .br implement a binary compare of a network stream and a
disk stream. If you don’t want to do this (not many people will, I suspect), then you don’t need these files.
FtpUtilCompA contains two Block comparison procedures: one uses a fast machine code loop and the

other uses specia microcode which you must load into the Alto’s ram.

CompareNetWithDisk(remotePL, localPL) = trueffalse

Compares diskStream with bspStream byte-by-byte and reports the results to dspStream. If the two
streams are identical (and the same length), then a string of the form "xxx identical bytes' is output,
otherwise a string of the form "difference near byte pos xxx" is output. Returnstrueif everything
went OK, false it something catastrophic happened to the network connection (note in particular that

aresult of true implies nothing about whether the two streams were identical).

The following fields in the FtpCtx must be set up: bspStream, dspStream, diskStream, buffer, and
bufferLength. An additonal buffer of bufferLength words is temporarily allocated.

5. Property Lists

The property list module (files FtpPListProt.br, FtpPList1.br, and FtpPListInit.br) translates between this
package’ sinternal representation of a property list and the protocol-specified network representation.

The FTP protocol specifies the syntax of a property list and the syntax of a set of properties sufficient for
standard file operations, but states that property lists are extensible. Therefore the property list module
comes in two parts: a part that knows the syntax of property lists, and a part which knows the syntax of
individual properties. To add new properties you need only modify the latter.

The principal data structure in this module is the Property List Keyword Table, or pListKT. This table,
built by InitFtpPlist, contains (propertyName, propertyObject) pairs. PropertyNames are strings such as
"Byte-size". PropertyObjects know how to Scan (parse) properties into pLists, Generate properties from

pLists, Initialize properties from a pList full of default values, and Free properties stored In pLists.

5.1. Property List Protocol

File FtpPlistProt.br implements four operations on property lists. Thisisthe module that knows the syntax
of aproperty list, but not the syntax of individual properties. Proceduresin thisfile use the bspStream,
bspSoc, and dspStream fields of the FtpCtx and contain the following external procedures:

InitPList(defaultPL []) = PL
Creates an empty pList, and initializes it to be a copy of 'defaultPL’ if one was supplied.

FreePList(PL)
Destroys PL and returns 0O to facilite writing PL = FreePList(PL). If PL iszero, FreePList returns
zero without doing anything.

ScanPList() = PL[false

Expectsto find a property list in bspStream. ScanPList parses this property list and returnsa PL if it
had proper syntax. If the property list is malformed, ScanPList calls FTPM(markNo, code, string)
and returnsfalse. If ScanPList encounters a mark before starting a PL or the connection closes or

Getstimes out, it returns false.

GenPList(PL)
Generates a property list in network format from PL and sends it to bspStream.

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 58

5.2. The'Standard’ Properties

Files FtpPlistl.br and FtpPlistInit.br implement the standard properties. These files know the syntax of
individual properties; they contain the operation procedures for the standard property objects. These files
are used by the FTP subsystem and IFS and are sufficient for performing ' standard’ file operations. If you
wish to add properties, these are the modules which you must change. In addition to the property
operations which are rather specialized to their task, there are afew generally useful procedures which are
made external:
InitFtpPList()
which makes the standard property objects and builds fpIKT, getting space from sysZone. This
procedure must be called before calling any of the proceduresin FtpPlist.br (which typically means

before starting a server or calling any procedures in the User module).

Nin(string, IvDest) = truelfalse
Interprets’string’ as a decimal number and leaves theresult in 'lvDest’, ignoring leading blanks and
terminating on end of string. A null string resultsin lvDest getting 0. Returnsfaseif the string
contains any characters other than 0-9 and <space>.

ParseDate(string, IvRes) = truelfalse
Parses the string format date into an Alto format date which it puts into the two word vector a
'IvRes’. Returnstrueif it could parse the date. ParseDate expects the format of the string to bear
some similarity to "day-month-year hour:minute:second".

WriteDT(stream, dt)
converts’dt’ from 32 bit Alto date format to a string of the form "dd-mmm-yy hh:mm:ss* and writes
it to’stream’.

6. Example

The following example program makes use of most of the facilitiesin the User part of the Ftp Package. I
haverun it and it works. It Iisarock-bottom minimal User Ftp with no redeeming features whatsoever.
More extensive and realistic examples can be found by looking at the sources for the Ftp subsystem.

The main procedure FtpUserExample performs initialization, which consists of augmenting SysZone,

initializing the Ftp and Pup packages, and creating and starting a context running the procedure ’User’.

User opens a BSP connection to Maxc, sets up its FtpCtx, gets and fillsablank pList, and cals
UserRetrieve. When UserRetrieve returns, User closes the connection, releases its resources and commits
suicide.

/IFtpUserExample.bcpl - Example Ftp User
/Nast modified April 9, 1978 4:24 PM

/I The load command fileis:

// Bldr/lI/v 600/W FtpUserExample

I

/I FtpUserProt FtpUserProtFile »

/] FtpPListProt FtpPList1 »

/I FtpUtilb FtpUtila FtpUtil Xfer ~

nn

/I PupBspOpenClose PupBspStreams PupBspProt PupBspBlock PupBspA
/I PupRtpOpenClose PupRtp PupNameL ookup *

/I Pup1OpenClose Pupl1B PupAl1A PupRoute PupDummyGate *
[/l PUpAIEthB PupAlEthA ~

nn

/I Context Contextlnit Interrupt »

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980

/I AltoQueue AltoTimer AltoByteBIt ~

/I Template CTime StringUtil Keyword »
I

/I FtpPlistinit FtpUtillnit Keywordlnit »
/I Pupllnit PupAlEthinit Interruptinit

get "FtpProt.decl”
get "Pup.decl”

external

/lincoming procedures

InitFtpUtil; InitFtpPList; InitPupLevel 1

GetFixed; CallSwat; AddToZone; Allocate; Free

InitializeContext; CallContextList; Enqueue

GetPartner; OpenL evel 1Socket; OpenRTPSocket; CreateBSPStream
InitPList; FreePList; NetToDisk

UserRetrieve; UserOpen; UserClose; NetToDisk

ExtractSubstring; OpenFile; Closes; Wss

/lincoming statics
sysZone; dsp; CtxRunning; UserName; UserPassword
]

let FtpUserExample() be

[

let v = GetFixed(10000)

if v eq 0 then CallSwat("GetFixed failed")
AddToZone(sysZone, v, 10000)

let ctxQ =vec 1; ctxQ!0=0

InitFtpUtil()

InitFtpPList()

InitPupLevel1(sysZone, ctxQ, 10)
Enqueue(ctxQ, InitializeContext(Allocate(sysZone, 1000), 1000,
User, lenExtraCtx))

]Cal [ContextList(ctxQ!0) repeat

and User(ctx) be //a context

let soc = Allocate(sysZone, lenBSPSoc)

let maxcPort = vec lenPort

unless GetPartner("Maxc", dsp, maxcPort, 0, socketFTP) do
CallSwat("GetPartner failed")

OpenL evel 1Socket(soc, 0, maxcPort)

unless OpenRTPSocket(soc) do
CallSwat("OpenRTPSocket failed")

CtxRunning>>FtpCtx.bspStream = CreateB SPStream(soc)
CtxRunning>>FtpCtx.bspSoc = soc
CtxRunning>>FtpCtx.dspStream = dsp
CtxRunning>>FtpCtx.buffer = Allocate(sysZone, 256)
CtxRunning>>FtpCtx.bufferL ength = 256
CtxRunning>>FtpCtx.debugFlag = true
unless UserOpen(Version) do

CallSwat("UserOpen failed")

let localPL = InitPList()
localPL>>PL.UNAM = ExtractSubstring(UserName)
local PL>>PL.UPSW = ExtractSubstring(UserPassword)

Cleared version of May 24, 1981
Pup FTP Package December 25, 1980 60

local PL>>PL.SFIL = ExtractSubstring("<system>Pup-Network.txt")

let mark = UserRetrieve(localPL, Retrieve)

if mark ne markEndOfCommand then
CallSwat("UserRetrieve failed")

FreePList(localPL)

UserClos()

Free(sysZone, soc)

Free(sysZone, CtxRunning>>FtpCtx.buffer)

{inish

and Version(stream, nil) be Wss(stream, "Example FTP User")

and Retrieve(remotePL, localPL) = RetrieveFile

and RetrieveFile(remotePL, localPL) = valof

let s = OpenFile(remotePL>>PL.NAMB, ksTypeWriteOnly, charltem)

CtxRunning>>FtpCtx.diskStream = s
unless NetToDisk(remotePL, localPL) do CallSwat("NetToDisk failed")

Closes(s)

resultis true

7. Revision History

March 30, 1977

First release.

May 15, 1977

Added Directory and Rename commands. Server now handles property lists which specify multiple files.
Added User and Server mail operations.

June 8, 1977

Overlay machinery was changed and some bugs were fixed. Some structure definitions changed, so
recompilation of user programsis necessary.

July 17, 1977

DiskToNet and NetToDisk moved out of FtpUtilb into a new file FtpUtilXfer. Property lists reorganized,

causing changes to the calling interface in FTPSI. Plist module now uses the Keyword routinesin the
CmdScan package. Recompilation of user programsis necessary. FtpUserDmpLd renamed

FtpUtiIDmpLd. Timeouts cleaned up.
October 24, 1977

Example program added.

February 14, 1978

Files FtpUtilCompB and FtpUtilCompA, implementing a byte-by-byte compare of the net stream with a
disk stream added.

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 61
April 9, 1978

Implemented the new form of Store in which the Server returns a property list specifying the destination
file. Theold formisstill supported, but no longer documented.

June 1, 1978

FtpServProt.bepl split out of FtpServProtFile.bepl. FtpServProtMail.bepl updated to the current MTP.

Many data structures changed so recompiliation of user programsis necessary.
September 20, 1980

Parameters passed to client routines changed. Both property lists are passed now. Recompilation is
necessary.

December 16, 1980

Timeouts reworked. Statics’getCmdTimeout’ and 'getPutTimeout’, and their default values, manifests
'defGetCmdTimeout’ and ' def GetPutTimeout’ were removed, since Pup byte stream activity timeouts,
added about a year ago, do the samejob. FtpServProt now takes atimeout which it uses while waiting for

top level commands.

Cleared version of May 24, 1981
Get and set bits June 1, 1977

Get and set bit fields

This package makes it easy to extract and replace strings of up to 16 bitsin avector of bits. It has
virtues except convenience -- it is neither fast nor compact.

GetBits(Base, BitDisp, Count) -> Vaue
extracts Count bits starting at bit number BitDisp of the bit vector beginning at word address Base
returns them right-justified as Value. Bit numbering begins with the high-order bit of the first word
continues through the low-order, and then continues in the second word, etc. Here are two
GetBits(x, 16, 8) is equivalent to x!1 rshift 8; GetBits(x, 13, 1) is equivaent to (x!0 rshift 2) & 1.

SetBits(Base, BitDisp, Count, Value)
replaces Count bits starting at bit number BitDisp relative to Base with the low-order Count bits of
value Value. (Extraneous high-order bitsin Vaue will beignored.)

GetBits and SetBits perform no error checks -- if BitDisp is negative, or Count is negative or greater
16, they will do the wrong thing. Count=0 and Count=16 are OK.

62

no

than

Cleared version of May 24, 1981
GP: parse command lines January 2, 1978 63

GP: Routines for parsing command lines

The routines described here are a convenient package for parsing command lines and doing afew related
functions. They may be found in GP.Bcpl (source) and GP.Br (binary). No external routines are caled
except those supplied by the operating system.
An "unpacked string" isavector v such that vi1, V12, ..., vI(v!0) contain the characters of the string, one per
word, right justified.
A "parameter" in acommand lineisamaximal sequence of characters not containing $*S or $*N. All the
characters before the first $/ are the "body"; the remaining characters, with any $/ charactersignored, are
the "switches". Thus

BCPL/F FOO.Bcpl
contains two parameters. The first has body "BCPL" and switches"F". The second has body "FOO.Bcpl"

and no switches.

SetupReadParam (stringV ec, switchVec, stream, comSwitchV ec)

stringVec is a vector whose length in words should be greater than the number of characters
in the longest body in the command line. A 0 defaults it to a 256-word vector inacessible to
the user; this may be useful if al the parameters of the command are files or numbers (see
the discussion of ReadParam below).

switchVec is avector whose length in words should be greater than the largest number of
switches on any unit in the command line. A 0 defaultsit to a 128-word vector inaccessible to
the user.

streamis an OS character stream from which the command line will be read. It will not be
Reset or Closed. A 0 defaultsit to the disk file"Com.Cm". The stream isleft in the external

static ReadParamStream.

comSwitchVec is a vector whose length in words should be greater than the number of
switches on the first unit in the command line. A 0 defaults it to switchVec.

Missing parameters are defaulted.

This routine initializes the parameter-reading machinery. 1t then does a ReadParam() which will pick off
the first parameter (i.e., the name of the program) and leave the name and switches as unpacked strings in
stringVec and comSwitchVec. If either of these was defaulted to an inaccessible vector, the corresponding

information islost.

Cleared version of May 24, 1981

GP: parse command lines January 2, 1978 64

ReadParam (type, prompt, resultVec, switchVec, returnOnNull)

typeisan integer or Bepl string representing the expected type of the parameter. If type < 256,

it isinterpreted as a character which must select a defined type from the list described below.
If type > 256 it istreated asa Bcepl string. If the string is one character long, it is interpreted as
though that character had been used. If it islonger, the first two characters must select a
defined type from the list below.

prompt isaBcpl string which is used to prompt the user for another try at the parameter if a
syntax error is discovered. A O defaultsitto " Try again: .

resultVec is a vector used to return the result for types which need more than one word to
represent their result. A O defaultsit to the stringVec passed to SetupReadParam (in which
case there must have been one or else ReadParam will call Swat).

switchVec is avector used to return the switches as an unpacked string. A 0 defaultsit to the
switchVec passed to SetupReadParam.

returnOnNull is a boolean which decides what to do if the parameter body isnull. It defaults
tofalse.

Missing parameters are defaulted. If typeismissing, it is defaulted to O.

One parameter is read from the stream passed to SetupReadParam. The switches are separated off and | eft
in switchVec. Any $/ characters among the switches are stripped off. If there are no switches, switchVec!0
will be 0.

Then the body is handled in away which depends on the type:

(the integer 0, not the character $0 or the string "0"!) It isreturned in resultVec as an
unpacked string. Result isresultVec.

Itisreturned in resultVec as a packed (Bcpl) string. Result is resultVec.

It istreated as the name of an input character file, to be opened with OpenFile(body,
ksTypeReadOnly, charltem). If the open fails, prompt for another name. Result isthe stream
returned by OpenFile. In addition, the file nameis returned in resultvec as a Bepl string.

Likel, but aword stream is created.

Oor OC: Likel, but OpenFile(body, ksTypeWriteOnly, charltem) is called.

OW:

Like O, but aword stream is created.

For EF: Likel, but OpenFile(body, ksTypeReadWrite, wordltem) is called.

B:

D:

An octal number is collected and returned. Numbers may start with #, which forces them
octal, and may end with B, b, O, or o (which forces them octal) or with D or d, which forces
them decimal. Anything elseis a syntax error and causes a prompt for another number.

Result is the number.

Like B, but for decimal number.

Any undefined type resultsin acall on Swat.

Cleared version of May 24, 1981
GP: parse command lines January 2, 1978

If the body is empty, ReadParam immediately prompts, without generating an error message from the
body, unless returnOnNull istrue or prompt eq -1, in which case it returns -1 when it sees anulll
When prompting for new input, DEL cancels whatever has been typed and allows another try, and BS
control-A backspace one character.

EvaParam (body, type, prompt, resultV ec)
body is an unpacked string

the other arguments are like the corresponding ones for ReadParam. resultVec defaults
body.

body and type may not be omitted.
Works exactly like ReadParam, using body as the parameter body. Does nothing about switches.

routineis useful for programs whose interpretation of parameters depends on the switches attached
them.

ReadString (result, breaks, inStream, editFlag, prompt)

result is avector in which the string read will be returned, unpacked. May not be defaulted.

breaksis aBcpl string containing the characters which will cause reading to
Defaultsto "*N".

inSream is the stream to read from. Defaults to keys.

editFlag says whether DEL, BS and control-A should be interpreted as editing characters. If
isfalse, they are not. Otherwise they are, and furthermore, editFlag is taken as the stream

which echoing of the input should be done. It defaults to false unlessinStreamis keys,
which case it defaults to dsp.

prompt is echoed after aDEL. It defaultsto "".
Reads characters from inStream until one of the charactersin breaks is encountered, leaving the

read in result as an unpacked string. Returns the break character. Allows editing of the input as
under editFlag above.

Additem (vek, value)
vek is avector whose current sizeis given by vek! 0.
valueis an uninterpreted 16-bit quantity.

Increments vek! 0 and stores value at the new vek! (vek! 0).

65

null
body.
and

to

This
to

terminate.

it
on
in

characters
described

Cleared version of May 24, 1981
Bepl Interrupt Interface July 30, 1978 66

Bepl Interrupt Interface

A tiny software package is available that permits Bepl procedures to be called as a result of hardware
interrupts on the Alto. The relevant files are contained in Interrupt.Dm. There are two files, Interrupt.br,
which contains code that must always be resident (75 instructions), and Interruptinit.br, which contains
code that is required only during initialization of interrupt channels (namely FindlnterruptMask and
Initializel nterrupt) and may be thrown away after initialization is complete (200 instructions). The sources
are contained in InterruptSource.dm, which also includes various command files and I nterruptEx.bepl, the
example program given at the end of thiswriteup. A Novaversion of this package is available.

The specification of an interrupt channel is uniformly accomplished with a"mask” that has a one bit for
the (Alto) interrupt channel to use. Thus mask=1 isthe highest priority channel, mask=#40000 the
lowest. (The Alto itself assigns no priorities to channels, but conventions followed both in this package and

in the operating system define the priorities as given here.)

mask=FindI nterruptMask(trial M ask)

This function returns a mask for an ununsed interrupt channel of equal or lower priority than
tridMask. It iswise awaysto use this function to assign interrupt channels, as your channel
assignments are then relatively decoupled from onesin software packages you use or in the operating
system.

mask=I nitializel nterrupt(region, length, mask, proc)
This function initializes and arms the interrupt channel specified by "mask." The "region" parameter
pointsto ablock of storage that will be used as stack space for the procedure that is called whenever
an interrupt goes off; "length" is the number of usable words in that block of storage. Finaly, "proc”
is the address of the procedure to call on each interrupt.
The "region" is set up in the following way: the first 15 words hold code and context for saving and
restoring state when interrupts occur, the last 4 words are aminimal stack frame from which "proc" is
called, and the remaining words in between (a block of size "length"-19) are available for stack
frames needed by "proc" and any procedures called by "proc".
Theresult of the call to Initializelnterrupt is the value of the "mask" argument so as to facilitate use
of an actual parameter such as "FindinterruptMask(trialMask)", where "trialMask" is the mask of al

channels whose priority isto be higher than the one being initialized.

Destroylnterrupt(mask).

Turns off any interrupt channels represented by one bitsin "mask." The interrupt package keeps
track of all interrupt channels that the user program has enabled, and sets UserFinishProc in the
operating system to execute Destroylnterrupt(userl nterruptsEnabled) whenever afinish or abort is
done. This cleans up the interrupt system before returning to the operating system (note that the

previous value of UserFinishProc is properly saved and restored by this package).

Causel nterrupt(mask)
Initiates an interrupt request on any interrupt channels with one bits onin "mask".

Disablelnterrupts(); Enablel nterrupts()

These procedures disable and enable the interrupt system. Disablelnterrupts returns true if
interrupts were really on and false if they were already off. The Alto operating system provides
procedures of the same name for the same purpose; the copiesin the file Interrupt.Asm are provided
in case you Junta the operating system. Notethat it islegal for interrupt routines to include calls to
Disablel nterrupts and Enablel nterrupts (or to call procedures that do so), since the interrupt system is
turned baé%(on (with lower-priority channels masked out) before the user’s Bepl interrupt procedure
is executed.

Example:

Cleared version of May 24, 1981
Bepl Interrupt Interface July 30, 1978

The following somewhat senseless example illustrates the use of the interrupt package. It enables
interrupt channels; the high priority oneis activitated 60 times a second by vertical interval interrupts;
low priority oneis activated every second by the high priority one.

external [Ws; Initializel nterrupt; FindinterruptMask; Causel nterrupt |

static [lowChannel; tickCount]

manifest verticalInterval = #421

let Main() be

let stack1, stack2 = vec 40, vec 200

/I Initialize two interrupt channels

let high = Initializel nterrupt(stackl, 40,
FindlnterruptMask(1), HighProc)

lowChannel = Initiaizel nterrupt(stack2, 200,
FindlnterruptMask(high), LowPrac)

tickCount =0

/I Arrange vertical interval to cause interrupts on channel "high"
@verticalInterval = @verticalInterval % high

while true loop

and HighProc() be

if tickCount eg O then

[
tickCount = -60
Causel nterrupt(lowChannel)

}ickCount = tickCount +1

and LowProc() be Ws("Tick ")

67

two
the

Cleared version of May 24, 1981
Pseudo random access files November 9, 1976 68

I SF - pseudo random file access package

A package is now available which provides direct access to any page of an Alto disk file by
maintaining a run-coded table in core of the disk addresses of the pages. Any number of files, stored on
any of the disks which the Alto can accommodate, may be accessed simultaneously. This package was
designed for use with the virtual memory (VMEM) package, but is useful in itsown right. The ISF

package does not call any other packages other than the Alto Operating System.

1. Initialization
InitFmap(MAP, LMAP, FP[, CHECKFLAG, INCREMENT, ZONE, DSK])

Initializes the page table for afile. MAP must point to ablock of storage of length LMAP. FPis the
file pointer (see the O.S. manual) for thefile. InitFmap returnsfalseif LMAP is not large enough to
accommodate the page table structure, otherwise true.

If the optional CHECKFLAG argument is supplied and is true, then InitFmap will read the page
table from page 1 of thefile (if it exists) and check it for validity; also, each time IndexedPagel O extends
the page table in core, it will write it back on page 1 of the file. This considerably speeds up subsequent
u?e?] of]c .tlhe filethrough ISF. If CHECKFLAG is omitted or false, no special meaning is attached to page 1
of thefile.

If the INCREMENT argument is supplied, it determines the number of pages |ndexedPagel O will
"read ahead" in the file to augment the page table when this becomes necessary. INCREMENT defaults
to 10.

InitFmap and IndexedPagel O require a working buffer capable of holding one disk page; the optional
ZONE argument to InitFmap specifies how they will acquire the space for this buffer. ZONE=-1 (the
default) causes them to allocate the buffer on the Bepl stack. Otherwise, ZONE must be a standard
allocation zone as described in the Alto O.S. manual. ZONE=0 is equivalent to ZONE=sysZone.

The optional DSK argument points to the DSK structure on which the file resides (see the "Disks and
Bfs" section of the O.S. manual for details). DSK defaults to sysDisk, the disk on which files are normally
stored.

2. Datatransfer

IndexedPagel O(MAP, FIRSTREC, CORE, NUMRECS, WFLAG[, LASTNC])

Transfers NUMRECS pages between the file and core, starting at page FIRSTREC in thefile and
core address CORE, using MAP to obtain the disk addresses, and extending MAP by scanning the file
when necessary. WFLAG=0 meansread into core, calling Swat if the requested pages do not exist;
WFLAG=-1 means write onto the file, extending the file if necessary; WFLAG=1 means read into core,
extending the fileif necessary. If LASTNC issupplied with WFLAG=-1 (write), LASTNC will be written
into the numChars field of the last page transferred, and if it islessthan 2 * the page size, the file will be
truncated. IndexedPagel O returns the numCharsfield of the last page transferred.

Note that the page size is determined by the DSK structure supplied to InitFmap. This means, for
example, that NUMRECS=1 will transfer 400b words on a Diablo Model 31 or 44 disk (the usual Alto
disk), but 2000b words on a Trident disk.

WriteFmap(MAP)
Writes the page table on page 1 of thefile. Asmentioned above, this happens automatically if the

CHECKFLAG argument to InitFmap was true.

Cleared version of May 24, 1981

Pseudo random access files November 9, 1976

3. Packaging

The ISF package consists of two binary files: ISFINIT.BR which contains InitFmap, and
which contains the other two procedures. ISFINIT.BR may be discarded after use.

69

ISF.BR

Cleared version of May 24, 1981
Simple keyboard driver April 19, 1976 70

KBD - asimple keyboard driver

For programs which do not wish to use the keyboard driver provided by the Alto Operating System, a
package is now available which provides a basic keyboard input stream capability. In addition to a
character stream for keyboard characters, this package also optionally places mouse button and keyset
transitions in the stream, and also provides for calling a user-supplied function at interrupt time when any

of auser-selected set of characters appears in the input stream.
The KBD package iswritten entirely in Bepl and uses only afew basic facilities of the O.S. (such as
MoveBlock) and the Interrupt package.
1. Initialization
KBDinit(Zone [sysZone], extraSpace [0]) -> keystream

Initializes the keyboard handler. The necessary working space (about 150 words, plus extraSpace if
any) will be allocated from Zone. KBDinit uses the Interrupt package to alocate an interrupt level for
sampling the keyboard, buttons, and keyset on every vertical field interrupt. The extraSpace argument
specifies how much extra stack space to alocate for use by the interrupt routine beyond the amount
actually needed by routines in the package: this extra space is only needed for trap or overflow procedures

(see below). KBDinit returns the new keyboard stream, so atypical use might be
keys = KBDinit(Zone)

The package assumes the static location OsBuffer points to aring buffer structure as described in the
O.S. manual.
2. Stream operations
Gets(keystream) -> char
Returns the next character from the stream, waiting until a character is present if necessary.
Endofs(keystream) -> empty
Returns true if there are no charactersin the stream’ s buffer.
Resets(keystream)
Clears the stream’ s buffer.
Puts(keystream, char) -> notFull
If the stream’ s buffer is not full, adds char at the end of the buffer just asif it had been typed, and
returnstrue. If the buffer isfull, does not add char, and returns false.
3. Other facilities
The KBD package provides a number of other facilities through statics defined in the package. Note
that even the procedures mentioned below are defined in this way: for example, if you want to supply a
trap procedure, you must do something like
externa [kbdTrapProc]
kbdTrapProc = MyKhdTrapProc

kbdButtonsOn

Cleared version of May 24, 1981

Simple keyboard driver April 19, 1976 71

Thisstaticisinitialy false. If set to true, mouse button and keyset transitions will be placed in the
input stream (unless trapped: see below) just like typed characters. The encoding of these eventsis as
follows:

200b bottom (right) mouse button DOWN
201b middle mouse button DOWN

202b top (Ieft) mouse button DOWN
203b rightmost keyset key DOWN

207b leftmost keyset key DOWN
210b bottom (right) mouse button UP

217b leftmost keyset key UP

kbdTrapTable
kbdTrapProc(char) -> keeplt

The static kbdTrapTable points to atable of 16 words (allocated from Zone by KBDinit) which is
interpreted as a table of 256 bits, one for each possible 8-bit character. When the interrupt routine sees a
character whose bit in kbdTrapTableis set, instead of placing the character in the buffer it cals
kbdTrapProc(char). If kbdTrapProc returnstrue, the character is placed in the buffer as usual; if
kbdTrapProc returns false, the interrupt procedure assumes that kbdTrapProc has done al the necessary
processing. Thisfacility isintended for programs which want to detect interrupt characters even if
characters are queued ahead of them in the input buffer. kbdTrapProc isinitialized to TruePredicate,

which causes all characters to be placed in the buffer regardless of the setting of kbdTrapTable.
kbdOverflowProc(char)

If the interrupt routine finds the ring buffer full, it calls kbdOverflowProc(char). kbdOverflowProc is
initialized to Noop, which simply discards the character.
4. Packaging

The KBD package consists of two files, KBDINIT.BR and KBD.BR. KBDINIT.BR contains only the

KBDinit procedure, and may be discarded after calling KBDinit. KBD.BR contains al the other facilities
described in this memo.

Cleared version of May 24, 1981
KPM Pattern Matcher May 11, 1977 72

KPM Pattern Matcher

This package implements a simple but efficient Knuth-Pratt-Morris pattern match of a name against a
template that may contain one or more wildcard ("*") characters. Itsintended useisto aid searching a data
basg c<|)ntai ning many names (e.g., afile directory) for those names matching a given pattern such as
"* bcpl".

The package consists of two files, KPM Templateb.br and KPM Templatea.br. The source dump file
contains KPM Templateb.bcpl and KPM Templatea.asm, plus atest program KPM.bcpl and a collection of
command files.

There are two procedures. The first, MakeK PM Template, takes a pattern string, does some preprocessing,
and returns a data structure called atemplate. The second, MatchK PM Template, takes a string and a
template and determines whether or not they match. MatchK PM Template isimplemented very

efficiently, sinceit is expected to be called many times with different names but the same template.
The procedures are called as follows:

MakeK PM Template(pattern) = template

Constructs and returns a template for the pattern, which is supplied asa BCPL string. The template
isalocated from sysZone. "*"sin the pattern are interpreted as wildcard characters, i.e., characters
that will match zero or morereal characters. Aninitial or final "*" will match an arbitrary prefix or

suffix. The pattern must not contain characters whose ASCI| codes arein the range 0 to 3.

MatchK PM Template(string, template) = 0 or fail index
Compares the BCPL string against the template and returns zero if they match. Otherwise, returns
the index of the first character in the string that could not be matched in the template. Upper- and
lower-case | etters are considered to be equivalent.

Cleared version of May 24, 1981

LoadRam February 9, 1980 73
LoadRam

The LoadRam procedure loads a’ packed RAM image’ from main memory into the Ram, and optionally

performs a’silent boot’ to force one or more tasksinto the Ram. LoadRam is derived from the

L oadPackedRAM procedure described under ' Packed RAM Images’ in the Alto Subsystems manual, and

it uses packed RAM images produced by the PackMu program also described therein.

1. Initidlization

LoadRam is called in the following manner:

res = LoadRam(Ramlmage, boot [false], bank [0])

This procedure loads the RAM (if one exists) with a packed RAM image pointed to by Ramimage. If the
boot argument is true (default = false), the Alto is booted aswell. If the Alto hasa 3K RAM board, the
bank argument may be O, 1, or 2 to refer to RAMO, RAM1, or RAM2 respectively.

LoadRam returnsres<0 if thereisno RAM or if booting is impossible because there is no Ethernet
interface. Res>0 means that the constant memory in the Alto differs from the constants mentioned in
Ramlmage (the value of resis the number of disagreements). Res=0 indicatesthat all iswell. Once
Lorla\leaég has been called, the space occupied by L oadRam and the packed RAM image may be
reclaimed.

The format of the Ramlmage vector is asfollows:

Ramlmage! 0: Boot locus vector
Ramlmagel! 1 to 1#377: Constantsin locations 1 to #377
Ramlmage!#400 to !#2377: Instructionsin locations O to #1777

A RAM imagein thisform is constructed by the PackMu program, which converts a .MB-format file
(produced by Mu) into a.BR file that may be loaded with your program. The word described in the
PackMu documentation as being used for a version number is actually used to set the boot locus vector (if
the boot argument is true).
For example, the Trident controller microcode (TriConMc.Mu) is converted into a RAM image
(TriConMc.Br) in the following manner:

Mu TriConMc.Mu

PackMu TriConMc.Mb TriConMc.Br 77766 DiskRamlmage
The boot locus vector 77766 specifies that tasks 0, 3, and 17 (Emulator and two Trident disk tasks) be
started in the RAM and the rest in the ROM. The optional parameter DiskRamlmage specifies that the

static pointing to the packed RAM image be named DiskRamlmage rather than the default Ramlmage.

The’silent boot’ is achieved by arranging that the starting location of the emulator task in the RAM
(location 0) contain the first instruction of the following sequence:

LOCO: SWMODE;

:START,;
where START is defined to be location 20 (the beginning of the Nova emulator’s main loop). These
instructions must be contained in the packed RAM image. Then, when the machine is software-booted by

L oadRam, the emulator task is started in the RAM (because of the setting of the boot locus vector; see

Cleared version of May 24, 1981

LoadRam February 9, 1980 74
below). The two instructions above merely return control to the main Nova emulation loop in the ROM,

thereby bypassing the usual disk boot |oad sequence.

Note: the LoadRam package uses the RAM utility area (774B through 1003B) for scratch purposes.

L oadRam saves and restores microinstructions that it uses, but the programmer must take care that non-

emulator microcode does not occupy thisregion. See section 9.2.5 of the Alto Hardware Manual.

Whnen making use of the multiple RAM banks of the 3K RAM configuration, you must assemble and load
independent RAM images for each one, and load them into the RAM by separate calls to LoadRam.

The LoadRam package contains two additional procedures of interest to clients:

res= SetBLV (blv)

Sets the Alto’' s Boot Locus Vector to the value blv. This determines the microinstruction bank in which
each task will start at the next boot, as follows: bit O correspondsto task 15 and bit 15 corresponds to task
0; azero bit means the task will start in RAMO, and aone means it will start in ROMO. SetBLV returns 0

normally and -1 if no RAM is present.
res = RamConfiguration()

Returns a value indicating the RAM/ROM configuration of the machine:

0 NoRAM (most likely the machine is not really an Alto)

1 1K RAM, 1K ROM

2 1K RAM, 2K ROM

3 3K RAM, 1K ROM
2. Cleanup
When exiting a program that has micro-tasks active in the RAM, it is considered polite to perform a 'silent
boot’ to force all tasks back into the ROM. If thisis not done, subsequent use of the RAM by another

program may cause some running task to run awry.

To do this, simply set the boot locus vector to start only the emulator task in the RAM; then use StartlO to
boot the machine. Thisis accomplished by the statements:

SetBLV (#177776)
Start| O(#100000)

SetBLV is defined in the LoadRam module, and Startl O in the Operating System.

If you throw away the LoadRam package at initialization time, performing this cleanup presents a dight
problem. Oneway to solveit issimply to issuethe SetBLV call immediately after the LoadRam. The boot
locus vector will remain set to this value until the StartlO isissued at cleanup time. The disadvantage of
this method isthat if the user attempts to boot the Alto manually during execution of the program, the first

depression of the boot button will have no effect (a potential source of confusion).

AI';ernaIiver, you may include in the microcode the following instruction, located at afixed place (eg.,
22):

LOC22: RMR_ACQO, :LOCGQ;
This code may be invoked at cleanup time by a JMPRAM instruction, as follows:

(table [#61010; #1401 1)(#177776, #22) //IMPRAM(22) sets BLV_ACO
Startl O(#100000)

Cleared version of May 24, 1981
MDI May 26, 1977 75

MDI: Multiple Directory Lookups

This package allows a program to look up agroup of file namesin adirectory in asingle pass, and return
the directory entries without actually opening the files. This may be useful for programs (such as Bldr)
which wish to avoid time-consuming multiple scans of a directory.

The code iswrittenin Bepl. It declares one entry procedure LookupEntries, and only uses standard
procedures from the operating system.

LookupEntries(S, NAMEVEC, PRVEC, CNT, FILESONLY ,Buffer,BufferL ength)

Sisadirectory: it must be adisk stream. LookupEntriesresets S and then reads through it. NAMEVEC is
avector of CNT strings, the file names. A zero entry in NAMEVEC issimply skipped. PRVEC isa vector
of IDV*CNT words, where LookupEntries stores the directory preambles corresponding to NAMEVEC.
If agiven nameis not found, its block in PRVEC will be zeros: since the first word of a directory entry can
never be zero, one can test the first word of the PRV EC block to determine if a name was found. If
FILESONLY istrue, LookupEntries will only check directory entries that designate real files; if false,
LookupEntries will check al entries (including links, or any other types that may be defined eventually).

The optional arguments "Buffer" and "BufferLength" give a core buffer that can be used to buffer the disk
stream more efficiently. |f these arguments are absent, L ookupEntries will obtain a small buffer from the
stack.

LookupEntries returns the number of names not found. Thusif all names were found, LookupEntries
returns zero.

LookupEntries will always find the "most recent” version of al files givenin NAMEVEC. Thefirst word
of the preamble is smashed with the version number of the file found (zero still implies the file was not

found).

Cleared version of May 24, 1981
Bcpl overlay package May 24, 1977 76

Bcpl overlay package

This package enables Bepl programmersto split up their programs almost painlessly into a core-
resident portion and any number of type B overlays (see the Bcpl documentation for the exact meaning of
thisterm), any number of which may bein core at onetime. In general no changes whatever are required
to the programs themselves: all that need be changed is the loading process (Bldr command to the
Executive). The package uses the Alto OS only at the Bfs level and below.

Since this package is designed mostly for people with sophisticated needs, this documentation is
somewhat less tutorial than usual for Alto Bepl software packages. People intending to use the package
should be prepared to consult its author.

In the descriptions below, Bepl procedure descriptions are set off by ** so they will stand out better
from the surrounding text.

(5/18/77)

This release adds "special entries' -- overlaid procedures accessed through an extralevel of code so

that the procedure static doesn’t change (see below for details).
(12/8/76)
The only changes in this release are the addition of a new static (OverlayCoreOffset) and an increase

in the amount of space required for the overlay descriptor table (odvec argument to OverlayScan).
1. How to load your program

Suppose your program comes in the following pieces: .BR filesresl, res2, ..., resn are the permanently

resident part; ovl-1, ..., ovl-m arethefirst overlay (order of overlays, or pieceswithin an overlay, is
unimportant); ov2-1, etc. are the second overlay, and so on. The Bldr command should look roughly as
follows:

>BIdr/B resl ... resn x1/B 0/P ov1-1 ... ovl-m x2/B O/P ov2-1 ...
The names x1, x2, etc. are purely arbitrary names: the presence of the /B iswhat informs Bldr that a new

overlay is beginning.
2. Initializing the overlay package

Before you attempt to call any procedure in an overlay, you must initialize the overlay package. The
normal way to do thisisto call
** QverlayScan(fptr, odvec, odvsize], fa, buf, bufsize, fixvec, fixsize, disk, epvec, epsize])
Arguments beyond the third are optional. The arguments have the following significance:

Fptr isthe FP for the .Run file which contains the overlays. The Alto OS passes a CFA to your entry
procedure (see sec. 3.11 of the Alto OS manual), and this CFA contains asits FP the FP of this .Run file:
thisis the normal way to get hold of this FP.

Odvecisatable areafor the overlay package. OverlayScan initializesthis area, and it must stay around
and not move during the execution of the program. The space required is 5 words per overlay, plus 3
words per special entry (i.e. 3*epsize), plus 25 words of fixed overhead.

Odvsize is the amount of space you have supplied for odvec.

Fa, if present, isaFA at which OverlayScan should start scanning the .Run file. Normally this will be
the FA from the CFA mentioned above.
Buf, if present, isabuffer which OverlayScan will use for reading in the .Run file. The bigger the

buffer, the faster OverlayScan will be able to read through the file.

Bufsize is the amount of space you have supplied for the buffer.

Fixvec, if present, is atable areainto which the overlay package will store information about the
addresses of statics which refer to proceduresin overlays. If you supply afixvec and save somewhere the
contents which OverlayScan writesinto it, you will be able to bypass OverlayScan entirely on subsequent

Cleared version of May 24, 1981

Bcpl overlay package May 24, 1977 77
runs of the program (provided you know somehow that the .Run file hasn’t changed or moved on the disk)
and use the Overlaylnit procedure instead, which doesn’t scan the .Run file. The space required for fixvec
is 1 word per overlay, plus 1 word per specia entry, plus 1 word for each procedure in each overlay, plus 1

word of overhead.

Fixsize is the amount of space you have supplied for fixvec.

Disk isthe DSK structure on which the .Run file is stored (see sec. 2 of the "Disks & Bfs" section of the
Alto OS manual). It defaults to sysDisk, the disk on which the OS normally storesfiles.

Epvec, if present, is avector of addresses (Iv’'s) of procedure statics. Normally, the static for a non-
resident procedure contains atrap value when its overlay is not in core, or the entry address when the
overlay isin core. Thismakesit impossible to copy the contents of the static freely into other statics or data
structures. However, if the address of the static appears in epvec, the package creates atiny piece of
intermediate code in odvec and sets the procedure static to point permanently to this piece of code. For
such procedures, you can pass the contents of the static around at will after calling OverlayScan (or
Overlaylnit).

Epsize is the number of entriesin epvec.

OverlayScan returns -1 if odvsize was too small, or -2 if you supplied a fixvec argument and fixsize
wastoo small. Otherwise, OverlayScan returns the number of words of fixvec actually used, or an arbitrary

positive number if there was no fixvec argument.

If you supplied a fixvec and saved the contents of both odvec and fixvec, then you can use the
following initialization call in the future:
** Qverlaylnit(odvec, fixvec], disk])
which simply initializes al the non-resident procedure statics to their appropriate values and setsup a few
internal variables. In this case disk defaults to the value of the disk parameter you gave to OverlayScan, or
to the (current) sysDisk if that was defaulted.

3. Operation of the package

The overlay package makes no assumptions about how you wish to allocate core space for overlays.
Consequently, you must supply (and declare external) a procedure with the following name and
arguments:

** UserReadOverlay(od) -> base

This procedure is called on an "overlay fault", which occurs whenever you attempt to call a procedure in
an overlay that isnot in core. Odisan "overlay descriptor" which you may passto various procedures
described just below. Y our UserReadOverlay procedureis responsible for deciding what overlays or other
information to discard from core if necessary, calling ReleaseOverlay if necessary to notify the package of
overlays being discarded, reading in the new overlay using ReadOverlay, and finally returning base, the

address at which you have read in the new overlay.

UserReadOverlay should first call the procedure
** L ockPendingCode()

which scans the Bepl stack and determines which overlays are currently in the process of execution and
hence are not eligible for being discarded. Then, in the course of deciding which overlay to discard,
UserReadOverlay may call

** ReleaseOverlay(od, false) -> ok

which returnstrueif it is OK to discard the overlay whose descriptor isod. To notify the package that an

overlay is actually being discarded, call

** ReleaseOverlay(od, true)

In order to discover which overlays are present in core, UserReadOverlay may call
** GeneratePresentOverlays(proc)

which calls proc(od) for each overlay currently in core.

UserReadOverlay may use the following procedures to discover various useful parameters of a given
overlay:
** QverlayFirstPn(od) -> pn
returns the page number in the .Run file at which a given overlay begins (the first argument to

ReadOverlay, below).
** QOverlayNpages(od) -> npages

Cleared version of May 24, 1981

Bcpl overlay package May 24, 1977 78
returns the number of pages required for the overlay on the .Run file and in core (the third argument to
ReadOverlay).

** QverlayDiskAddr(od) -> da

returns the disk address of the first page of the overlay.

** QOverlayCoreAddr(od) -> base

returns the current core address of an overlay, or O if the overlay is not currently in core.

When UserReadOverlay has finished making any necessary decisions, it should call
** ReadOverlay(pn, base, npages)
which actually calls the Bfs to read the overlay into core.

The overlay package supplies three other procedures which likely to be of lesser interest:
** GenerateOverlays(proc)
calls proc(od) for every overlay regardless of whether it isin core or not. This may be useful during
initialization when deciding how much space to allocate in core for reading in overlays.
** FindOverlayFromPn(pn) -> od
finds an od given the first page number in the .Run file, or calls Swat if pnis not such a page number.
** DeclareOverlayPresent(od, base)

tells the package to believe that the given overlay is present in core at the given address. (The package
automatically calls DeclareOverlayPresent(od, UserReadOverlay(od)) in the course of processing an
overlay fault.)

The overlay package also supplies a static which is useful if you are using it in conjunction with the
VMEM package. Thisstaticis called

OverlayCoreOffset

and is the displacement within the overlay descriptor of the word which holds the core address of the
overlay (returned by OverlayCoreAddr). This makesit possibleto say things like

LockCell(od+OverlayCoreOffset).
4. Restrictions and caveats

There are two known restrictions on use of this package. Oneisthat a procedure in an overlay which
is called from outside that overlay must not have more than 20 arguments. The other isalittle subtler.
Because the package operates by placing atrap value in the static cells of proceduresin overlays not
present in core, and re-executes the procedure call instruction after bringing in the overlay, the following

kind of code will not work:

SavedProcAddr = NonResidentProc

SavedProcA ddr(args)
because the package has no way of fixing up SavedProcAddr to point to the core address of the procedure.
Because of the way the Bepl compiler chooses to do things, the same is unfortunately true of the following

code sequence:

SavedLvProcAddr =|v NonResidentProc

(@SavedLvProcAddr)(args)
If you need to do thiskind of thing (e.g. in acommand processor which saves addresses of command
procedures, some of which may be non-resident, in a data structure), you should use the epvec and epsize
arguments to OverlayScan to declare which procedures need to be accessible this way.
Y ou may also run into trouble if you have a non-resident procedure which uses strings or tables: since
these are stored in the code itself, non-resident procedures will have to copy such strings or tables into

resident storage if they may be used when the procedureis not in core.

5. Multiple contexts

Cleared version of May 24, 1981

Bcpl overlay package May 24, 1977 79

If you have multiple contexts (in the sense of the Bepl Context package), itisall right for context
switching to occur while contral is inside the overlay package itself; in particular, since ReadOverlay cals
the Bfs, itisall right for this call on the Bfsto call Block while waiting for the disk. However, the overlay
package does assume it will not be pre-empted, i.e. it only allows for context switching during calls on the

user-supplied procedure UserReadOverlay and during the Bfs call in ReadOverlay.
If you have more than one context which uses overlays, then when an overlay fault occcurs you must

cal

** L ockPendingCode()

to lock any overlays on the current stack, and then

** | ockPendingCode(topframe)

with the topmost stack frame of each context that might use overlays. LockPendingCode assumes that
each stack is allocated downward in core: if you have a stack that violates this assumption, you must
sequence through the stack yourself and call

** | ockPendingPc(pc)

with each saved return address.

6. Use of the package with Trident disks

All page numbers (the page number in the fa argument to OverlayScan, the result of OverlayFirstPn,
and the pn argument to ReadOverlay and FindOverlayFromPn) and all page counts (the result of
OverlayNpages and the npages argument to ReadOverlay) refer to the sector size of the disk on which the
overlay fileis stored, i.e. 400b words for the Diablo disks but 2000b words for Tridents. Thisis consistent
with the meaning of "page" for the Bfsand Tfs.

Type B overlays are carefully arranged in .Run files so that they start at page boundaries. Y ou cannot
simply copy a.Runfileto a Trident and have this property be true with respect to the larger sectors size --
you must Insert blank pagesin the file as necessary. However, since OverlayScan doesn’t look at any part
of the file before the fayou give it, you don’t need to copy the resident part of the .Run file, only the

overlay part; then you can tell OverlayScan to start scanning at page 1 (the first data page).
7. Files
The overlay package consists of the following files:

OverlaysInit.BR - theinitialization procedures of section 2 above.
Overlays.BR - the procedures of section 3 above.

OverlaysVmem.BR - some routines for interfacing to the software virtual memory package (VMEM),
not described here.
Y ou may discard Overlaysinit after calling theinitialization procedures. Needlessto say, neither of these

files may itself be loaded as part of an overlay.

Cleared version of May 24, 1981

Paper Tape Package September 24, 1977 80
Paper Tape Package

No computer is complete without paper tape equipment. This package provides standard stream interfaces

to a DG Nova High Speed Reader and Punch viathe Diablo printer interface. The hardware only works

on Alto Is, and only with the particul ar paper tape egquipment we have at Parc.

The package consists of asingle binary file, PaperTape.br. The source for this, PaperTape.bcpl, is included

in PaperTape.dm, which also contains atest program, Paper TapeTest.bcpl, which generates various test
patterns for tuning the punch. Since the punch is mechanical, it must be oiled, and have its levers bent
now and then or it stops working.

Besides using standard operating system facilities, this package makes use of the Context and Timer
packages. If you don’'t want to include the Context package, define an external procedure Block() that

returns immediately.
There is one externally-callable procedure for the punch stream, which works as follows:

CreatePunchStream(zone [sysZone], leaderL ength [50.]) = ptps

Creates a Paper Tape Punch Stream (ptps) using the supplied parameters, both of which are optional.
LeaderL ength isthe length in inches of leader/trailer (blank tape with only sprocket holes punched)
that will be generated when the stream is created, closed or reset. The zone argument specifies the
zone from which the stream structure will be allocated (about 15 words). CreatePunchStream turns on

the punch, waits 2 seconds for the motor to come up to speed and then punches some leader.
The following operations are defined on a Paper Tape Punch Stream:
Puts(ptps, char)

Punches the specified 8-bit character (ignoring bits 0-7). Puts does some rather critical timing while
punching the character, and so it turns off interrupts for about 4.5 ms. If the punch does not supply a
sync signal within areasonable time, Errors(ptps, ecPunchNotReady) is called.

Resets(ptps)
Punches some leader. The amount is 50 inches (the default), or the amount specified in the optional
second argument to CreatePunchStream.

Closes(ptps)
Punches some leader, waits 1 second, turns off the punch motor, and then destroys the stream. This

includes returning the stream structure to the zone from which it was all ocated.
There is one externally-callable procedure for the reader stream, which works as follows:
CreateReaderStream(zone [sysZone]) = ptrs
Creates a Paper Tape Reader Stream (ptrs). The zone argument specifies the zone from which the
stream structure will be allocated (about 15 words). CreateReaderStream rel eases the brake and
capstan so that you can load the tape.
The following operations are defined on a Paper Tape Reader Stream:

Gets(ptps, stop [falseg]) = char or -1

Reads the next 8-bit character from the tape, returning -1 if the tape runs out. Gets does some rather
critical timing while reading the character, and so it turns off interrupts for awhile. Unlessstopis true,
the capstan will be left engaged, and you must call gets before the next character arrives or it will be

lost. Resetting the stream will aso stop the tape.

Resets(ptps)
Stops the tape and then rel eases the brake.

Cleared version of May 24, 1981
Paper Tape Package September 24, 1977

Closes(ptps)
Stops the tape, releases the brake, and then destroys the stream. This includes returning the

structure to the zone from which it was allocated.

WARNING: until the paper tape reader stream is created, the reader isin rip-tape mode: capstan
brake are both engaged!

81

stream

and

Cleared version of May 24, 1981

Pup Package January 25, 1981 82
Pup Package

The Pup package consists of alarge body of Alto software that implements communication by means of

Pups (Parc Universal Packets) and Pup-based protocols. This software is broken into a number of

independent modules implementing various "levels' of protocol in ahierarchical fashion. Each level

depends on primitives defined at lower levels, and defines new primitives (e.g, inter-network addressing,

process-to-process connections, byte streams) available to levels aboveit. A program making use of the

Pup package need include only those components implementing primitives utilized by that program.

1. Overview

This document is organized as a general overview followed by descriptions of each of the components of
tﬂe pagkage, with the lowest levels described first. A history of revisions to the package may be found a
the end.

Before beginning the real documentation, we should like to mention a number of points worth bearing in
mind throughout, as well as various caveats and suggestions for use.

a. Thisdocument concernsitself only with external program interfaces and not with protocol
specifications, internal implementation, motivations for design choices, etc. The Pup package implements
the protocols described in the memo "Pup Specifications' (Maxc file <Pup>PupSpec.Press) and in other
documents also to be found in the <Pup> directory. A higher-level overview of the Pup protocols may be
found in the report "Pup: An Internetwork Architecture”, file <Pup>PupPaper.press. Usersinterested in
protocol information are referred to those documents. Knowledge of these protocolsis not required when
writing programs making use of the higher-level primitives provided by the Pup package (specifically,
connections and byte streams), but is essential when dealing directly with the lower-level primitives.

b. Since both the software and the protocols are still under active devel opment, users are requested to
avoid making changes to the package, if at al possible. Thisis so that subsequent releases of the package
may be incorporated into existing programs with minimum fuss. We have attempted to provide as general-
purpose a package as is reasonable (consistent with clean programming practices and considering Alto
memory limitations), so if you come up with an application that simply can’t be accomodated without
modifying the package, we would like to know about it. There are a small number of parameters that we
have designated as "user-adjustable" and separated out into a special declaration file (PupParams.decl).
Theintention isthat users be able to change these parameters and recompile the package; however, one
should be aware that the software has not been tested with parameters set to values other than the ones in
the released version.

¢. One of the design goal s has been to implement software that will also run on aNova. All Alto-specific
code has been carefully separated out into modules containing "Al" in their names (e.g., PupAlEthb.bcpl
for the Alto Ethernet driver). The Nova equivalents of the Alto-specific modules (released as a separate
package) contain "Nv" in their names. Source files not containing "Al" or "Nv" in their names may be
recompiled on the Nova (with BCPL or the Nova version of Asm) and run without change; either they are
completely free of machine dependencies or (in afew cases) they enclose machine-dependent code in
conditional compilation. People writing general-purpose subsystems making use of this package are
encouraged to adopt the same approach.

d. The Pup package makes extensive use of primitives provided in four other software packages: Context,
Interrupt, Queue, and Timer. The dependence on the Context package means that calling programs must
operate in a manner compatible with contexts. In particular, the Pup package initiates a number of
independent background processes that must be given an opportunity to run fairly frequently. Hence, the
user’s "main program" must run within a context, and wait loops and very long computations in the main

program should be interspersed with callsto Block. For example, acall such as"Gets(keys)" (which causes

Cleared version of May 24, 1981
Pup Package January 25, 1981 83

busy-waiting inside the operating system) might be replaced by something like "GetKeys()", where the
latter function is defined as:

let GetKeys() = valof
while Endofs(keys) do Block()
resultis Gets(keys)
]

Alternatively, you may change the Operating System’s "ldle" procedure to call Block, if you understand
what you are doing. Consult the the Context Package writeup for further information.

1.1. Organization

The Pup software is divided into three major levels, corresponding to levels 0 through 2 of the Pup
protocol hierarchy. Software at a given level depends on primitives provided at all levels below it.

At level 0 isthe "transport mechanism" software necessary for an Alto to send and receive Pups on an
Ethernet. This consists of asmall Ethernet interrupt handler that appends received Pups to an input gueue
and transmits Pups taken from an output queue. It isthe only portion of the Pup package specific to the
Ethernet or to the Alto-Ethernet interface. Corresponding drivers are included for the XEOS EIA
integis\é:de and the ASD Communication Processor, for use in Altos that have those specia interfaces
Inst .

Level 1 defines a number of important and generally useful primitives. A program desiring to send and
receive "raw Pups' (without sequencing, retransmissions, flow control, etc.) would interface to the Pup

package at thislevel. Thelevel 1 module includes the following:

a. Procedures for creating, maintaining, and destroying a "socket", a process' s logical connection to
the Pup inter-network.

b. Procedures for managing "Packet Buffer Items® (PBIs), each of which holds a Pup and some
associated information while the Pup resides in Alto memory.

c. A background process that distributes received Pups to the correct sockets. Thisincludes checking
port address fields and optionally verifying the Pup checksum.

d. Proceduresfor allocating PBIs, building Pups, and queueing them for transmission.

e. A background process that dynamically maintains a routing table for transmission of Pups to
arbitrary inter-network addresses.

f. Optional procedures permitting the local host to be a gateway (not ordinarly used).

At level 2 are modules implementing three higher-level protocols: the Rendezvous/Termination Protocol
(RTP), the Byte Stream Protocol (BSP), and the Name Lookup Protocol. These are independent, parallel
protocols, each built on top of the primitives defined at level 1; however, the RTP and the BSP interact in a
way such that, in this implementation, BSP depends on the existence of RTP.

The RTP module contains procedures for opening and closing a "connection™ with aforeign process.
These have options permitting the local process to operate in the role of either "initiator" or "listener".

The BSP module contains mechanisms for sending and receiving data by means of error-free, flow-
controlled "byte streams" between alocal and aforeign process. These are true "streams’ in the sense
defined by the Alto operating system. Additionally, means are provided for sending and receiving Marks
and Interrupts, which are special in-sequence and out-of-sequence signals defined by the Byte Stream
Protocol. A separate, optional module permits sending and receiving blocks of datain memory an order of

magnitude more efficiently than by use of the basic "Puts' and "Gets" operations.

Cleared version of May 24, 1981

Pup Package January 25, 1981 84
The Name Lookup module contains a procedure for parsing an inter-network "name” (e.g., a host name)
and converting it to an address. When necessary, it finds and interacts with some name lookup server on

the directly connected network.

1.2. File Conventions

The Pup package is distributed as file PupPackage.dm, which contains the following binary files:

Level O
PupAlEthb.br Alto Ethernet driver (BCPL portion)
PupAlEthabr Assembly code for Ethernet driver
PupAlEthlinit.br Alto Ethernet initialization
PupAlEIADb.br Driver for EIA interface
PupAlEIAabr
PupAlEIAInit.br

PupAlComProch.br
PupAlComProca.br
PupAlComProcl nit.br

Driver for Communication Processor

Level 1

Puplb.br Main level 1 code (BCPL portion)

PupAllabr Assembly-language code for level 1

Pup1OpenClose.br Opening and closing Pup sockets

PupRoute.br Routing table maintenance and access

PupDummyGate.br Dummy substitute for gateway code

Pupllinit.br Leve linitialization
Level 2

PUpRTP.br Rendezvous/Termination Protocol

PupRTPOpenClose.br Opening and closing RTP sockets

PupB SPStreams.br Byte Stream Protocol (BCPL portion)

PupBSPProt.br Additional BSP code

PupB SPOpenClose.br Opening and closing BSP sockets

PupBSPa.br Assembly-language code for BSP

PupBSPBlock.br Fast BSP block transfer procedures

PupNameL ookup.br Name lookup module
Thefileswith "Init" in their names, as well as PupDummyGate.br, contain initialization code that need be
executed only once and may then be thrown away. (Note, however, that the level 1 and level 0 "Destroy"
procedures are included in the "Init" modules.)
File PupNameL ookup.br and the files with "OpenClose" in their names contain code that is infrequently
executed (i.e., only when particular types of sockets are opened or closed) and may therefore be loaded
into overlays (to be managed by the Overlay package) without significant performance penalties. All other
modules must remain resident while any part of the Pup package is active, since they contain main-line
code or code that is executed by continually-running contexts.
Additionally, the following "get" files are included. They contain declarations of all structures and other
parameters likely to be of interest to calling programs (as well as some others of no interest to callers). We

suggest that the user make listings of these files to accompany this documentation.

Cleared version of May 24, 1981

Pup Package January 25, 1981 85

Pup0.decl Level O definitions (network-independent)

Pupl.decl Leve 1 definitions

PupRTP.decl Definitionsfor RTP

PupBSP.decl Definitions for BSP

Pup.decl Does"get" of all the above

PupParams.decl User-adjustable parameters

PupStats.decl Statistics definitions

PupAlEth.decl Definitions specific to Alto Ethernet

PupAlEIA .decl Definitions specific to EIA driver

PupAlComProc.decl Definitions specific to ComProc driver
A program that does a"get" of any of the first group of files must also "get" al files earlier onthelist, and
in the same order. (We were not able to make this happen automatically because of alimit on the number
of simultaneous open files at compilation time). The file Pup.decl is provided for the convenience of
programs dealing with the package at the BSP level. A "get" of PupParams.decl isincluded in PupO.decl,
and PupAlEth.decl and PupStats.decl are not ordinarily of interest to outside programs.
The following table shows, for each module (including external packages), what .br files constitute that

module and what other modules are also required.

Module Name Files Other Modules Required
BSP Block Transfer PupBSPBlock.br BSP
ByteBIt

ByteBlIt (external) AltoByteBlt.br

BSP PupB SPStreams.br RTP
PupB SPProt.br
PupB SPOpenClose.br
PupBSPa.br

RTP PUpRTP.br Leve 1
PupRTPOpenClose.br
Name L ookup PupNamel ookup.br Level 1
Leve 1 Puplb.br Level O
Pup1OpenClose.br Timer
PupAllabr
PupRoute.br
PupDummyGate.br
Pupllnit.br

Level O

Context (external)

Interrupt (external)

Queue (external)

Timer (external)

PupAlEthb.br
PupAlEtha.br
PupAlEthinit.br

Context.br
Contextlnit.br

Interrupt.br
Interruptinit.br

AltoQueue.br
AltoTimer.br

Context
Interrupt
Queue

Cleared version of May 24, 1981

Pup Package January 25, 1981 86
There are afew global parameters that may be changed by modifying the PupParams.decl file and then
recompiling the entire Pup package. The most interesting parameter is"pupDebug”, which, if true

(default isfalse) causes some additional consistency checking code to be compiled.

The sources for the Pup package are contained in file PupSources.dm, and consist of the following files:

PupAlEthb.bcpl PupAlEtha.asm PupAlEthlinit.bcpl
PupAlEIAb.bcpl PupAlEIAa.asm PupAIlEIAInit.bcpl
PupAlComProch.bcpl PupAlComProca.asm PupAlComProclnit.bcpl
Pupib.bcpl PupAlla.asm Pup1OpenClose.bepl
PupRoute.decl PupRoute.bcpl

Puplinit.bcpl PupDummyGate.bcpl

PupRTPInternal .decl PUpRTP.bcpl PupRTPOpenClose.bcpl
PupB SPStreams.bcpl PupBSPProt.bepl PupBSPa.asm

PupB SPOpenClose.bcpl PupBSPBIock.bepl

PupNameL ookup.bcpl

Additionally, there are several command files:

CompilePup.cm Compiles all the source files

DumpPupPackage.cm Creates PupPackage.dm

DumpPupSources.cm Creates PupSources.dm

Pup.cm A list of al the source files
The source files are formatted for printing in asmall fixed-pitch font such as Gacha8 (the normal default
for Empress).

1.3. Glossary of Data Types

Name Defined in Meaning

BSPSoc PupB SP.decl BSP-level Pup socket, consisting of an RTP socket (RTPSoc) followed by
additional information about a byte stream. Thisincludes byte IDs
(sequence numbers), queues, and allocations for incoming and outgoing
data and interrupts, and a BSP stream block (BSPStr).

BSPStr PupBSP.decl BSP stream (part of a BSPSoc), for interfacing the BSPSoc to the Alto
operating system’ s stream mechanism.

HTP Pupl.decl Hash Table Preamble, defining the publicly-accessible operations on a
dictionary object (specifically, the Pup routing table). These operations
are Lookup, Insert, Delete, and Enumerate. This object is misnamed in
that it need not actually be implemented by means of a hash table; a
present, the Pup routing table is not.

NDB Pup0.decl Network Data Block, containing information specific to each network
physically attached to the local host. (A standard Alto has only one of
these, for the directly-connected Ethernet.)

PBI Pup0.decl Packet Buffer Item, which holds a Pup and various associated information.

PF Pup0.decl Packet Filter, controlling acceptance of incoming packets on a given
network.

Port Pup0.decl An inter-network address, consisting of network, host, and socket

numbers, as defined by protocoal.

PSIB Pupl.decl Pup Socket Info Block, contains data used for setting initial default values
when a PupSoc is created.

Cleared version of May 24, 1981

Pup Package January 25, 1981 87

Pup Pup0.decl An inter-network packet, as defined by protocol.

PupSoc Pupl.decl Level 1 Pup socket, defining a process' slogical connection to the inter-
network. It contains default local and foreign port addresses, PBI
allocation information, and an input queue header.

RT -- Routing Table, containing information necessary to route outgoing Pups
to destination hosts or to gateways. There is only one instance of an RT,

called pupRT. The structure of an RT is not public, but object procedures
(see HTP) are provided for accessing and enumerating individual Routing
Table Entries (RTEs), which are public structures.

RTE Pupl.decl Routing Table Entry (routing information for one network).
RTPSoc PUpRTP.decl RTP-level Pup socket, consisting of alevel 1 socket (PupSoc) followed by
additional information about a connection. Thisincludes State,

connection ID, timers, and a higher-level Pup-handling procedure.

soc -- An instance of a PupSoc, RTPSoc, or BSPSoc, depending on context.
Note that a PupSoc may be the initial portion of an RTPSoc, which may
in turn be the initia portion of a BSPSoc; hence, a given soc may be an

instance of more than one of these structures.

str -- An instance of a stream (most likely, a BSPStr).

2. Level O Interface

Only the level O driver for the Ethernet is described here. There also exist driversfor the EIA and
ComProc interfaces, but they are somewhat specialized and are not documented here. Their function is
analogous to the Ethernet driver and their operation is quite similar.

Thelevel 0 module (files PupAlEthb, PupAlEtha, and PupAlEthinit) serves only to interface the Alto
Ethernet to the network-independent Pup level 1 module. Assuming thelevel 1 codeis being used, as is
normally the case, external programs will generally have no occasion to deal directly with the level 0
mOth_uIe._ Provisions are a'so made for sending and receiving non-Pup Ethernet packets, for usein unusual
applications.

This module requires the existence of the following external statics (all of which are defined in level 1):

ndbQ A pointer to atwo-word queue header (hereafter referred to as "a queue”; see Queue
Package documentation) upon which the Ethernet NDB (etherNDB) may be queued by
thismodule. In a machine with more than one network interface, this queue contains

an NDB for each network.
pbiFreeQ A queue from which free PBls may be obtained, for buffering received Pups.
pbilQ A gueue to which PBIs are appended when Pups are received.
lenPup The maximum length of a Pup (in words).
The externally-callable procedures in this module are the following:
InitAltoEther(zone, ctxQ, device)
Initializes the Alto Ethernet interface and associated data structures. "zone" is afree-storage zone

from which space may be obtained for permanent data structures (currently less than 100 words).
"ctxQ" is agqueue on which a context created by this procedure may be queued. This procedure

Cleared version of May 24, 1981

Pup Package January 25, 1981 88
allocates an NDB and appendsiit to ndbQ); allocates an interrupt context (see Interrupt Package
documentation) and sets it up to field Ethernet interrupts; and allocates and initiates an ordinary
context (see Context Package documentation) which runs forever and whose job it is to restart the
Ethernet interface if it is ever shut off due to running out of free PBIs for input. InitAltoEther
returns having done nothing if the Alto doesn’t have an Ethernet interface installed (the level 1
initialization detects the condition of ndbQ being empty after all interface initialization procedures
have been called).

"device" should normally be 0O, referring to the standard Alto Ethernet interface. However, in Altos
with more than one Ethernet interface installed, the driver may be initialized multiple times, once for
each interface; in this case, device numbers 1 and 2 refer to the first and second additional interfaces.

EncapsulateEtherPup(phbi, pdh)

Encapsulates the Pup contained in "pbi" for transmission to physical destination host "pdh" on the
directly-connected Ethernet. The PBI should contain a completely well-formed Pup.
EncapsulateEtherPup sets the Ethernet destination, source, and type fields in the encapsulation

portion of the packet, and also sets the packetL ength word in the PBI. SendEtherPupis the
procedure called from level 1 viathe encapsulatePup entry in the Ethernet NDB.

SendEtherPacket(phi)

Queues "phi” for transmission on the directly-connected Ethernet, and initiates transmission if the
interface isidle. The PBI should contain a completely well-formed Ethernet packet (which need not
be a Pup), the packetL ength word in the PBI must contain the physical length of the packet in words,
pbi>>PBIl.queue must contain a pointer to a queue to which the PBI will be appended after it has
been transmitted, and pbi>>PBI.ndb must contain a pointer to the NDB associated with the Ethernet

interface through which the packet is to be sent. SendEtherPacket is the procedure called from level
1 viathe levelOTransmit entry in the Ethernet NDB.

SendEtherStats(pbi, ndb) = true or false
If the debugging version of PupAlEthb isloaded (pupDebug on), this procedure copies the statistics
accumulated by the Ethernet interface (described by ndb) into pbi and returnstrue. If the module
was not compiled with debugging on, SendEtherStats immediately returns false.

DestroyAltoEther(ndb)

Turns off the Ethernet interface designated by ndb, and releases all storage allocated by
InitAltoEther. Thisisthe procedure called from level 1 viathe NDB.destroy procedure. This
procedure isin the PupAlEthinit module, which must therefore be retained if the "destroy"
operation is actually to be utilized.

When a packet is received from the Ethernet, the input interrupt routine first verifies that the hardware

and microcode status are correct, and discards the packet without error indication if not. It then tests the

packet for acceptance by each Packet Filter (PF) on the Ethernet packet filter queue, as will be described
shortly. If some PF accepts the packet, the PBI is then enqueued on the queue designated in the PF;
otherwiseit isdiscarded. A free PBI isthen obtained from pbiFreeQ, and the receiver is restarted.

(Actually, an attempt is made to restart the receiver before any other processing so as to minimize the

interval during which a packet could be missed because the receiver isn't listening to the Ethernet.)

When an output PBI is passed to SendEtherPacket, it is queued on alocal Ethernet output queue (eOQ,

part of the NDB). If theinterfaceiscurrently idle, transmission isinitiated immediately; otherwise, the

PBI is simply left on the queue for action by the interrupt routine. When an output completion interrupt

occurs (or afatal error indication such as a"load overflow", or a 100 millisecond software timeout), the

PEI ié)then engueued on the queue specified in the PBI (typically pbiFreeQ or alevel 1 queue caled

pbiTQ).

Garden-variety errors (e.g., collisions, bad Ethernet CRCs, etc.) are handled automatically: input errors

cause the recelved packet simply to be discarded, while output errors cause retransmission. "Impossible"

errors (suggesting that the interface or the Alto is broken) result in acall to SysErr(@ePLoc,

ecBadEtherStatus).

Cleared version of May 24, 1981

Pup Package January 25, 1981 89
In the debugging version of this module (pupDebug on), a number of Ethernet performance statistics are
gathered. These are intended for experimental purposes and measurements. One should consult
PupStats.decl to see what is collected.

Though the primary purpose of the Pup level 0 module is to send and receive Pups on a particular directly-
connected network, means are also provided for sending and receiving arbitrary network-dependent
packets (i.e., Ethernet packets in an Alto).

Sending a non-Pup packet is straightforward: one simply calls SendEtherPacket after constructing the
desired Ethernet packet in the PBI, as described above.

Discrimination among received packets is accomplished by one or more objects called Packet Filters (PFs),
which reside on a Packet Filter Queue (pfQ) whose head isin the NDB. Each PF contains a predicate and
apointer to aqueue. When apacket isreceived, the predicate in each PF in turn is called with the PBI as
an argument. If the predicate returns true, the PBI is enqueued on the queue pointed to by the PF; if it
returns false, the next PFistried. If no PF accepts the packet, the PBI is discarded.

The pfQ initially contains a single PF that accepts Pups and appends them to phil Q (the level 1 Pup input
gueue). A program desiring to receive other kinds of Ethernet packets should construct its own PF and

engueue it on the Ethernet pfQ.

3. Level 1 Interface

Thelevel 1 module (files Puplb, PupAlla, PupRoute, PuplOpenClose, PupDummyGate, and Pupllnit)

contains the mechanisms enabling a process to send and receive individual Pups to and from other
processes at arbitrary inter-network addresses. Concepts such as "connection” and "stream", however, are
not defined at thislevel, so it is the process's responsibility to perform initial connection, seguencing,

retransmission, duplicate detection, etc., where required.

A process deals with the level 1 module through a PupSoc, alevel 1 socket structure (see Pupl.decl), which
completely describes that process' s interface to the inter-network at the first level of protocol. The
information in the socket is as follows:

iQ Input queue. PBIsreceived for the socket are appended to this queue. The two-
word queue header isincluded in the socket structure itself, so to remove a
packet from the iQ one would write "Dequeue(lv soc>>PupSoc.iQ)".

IclPort Local port address (a Port structure). This serves two purposes. First, the
"socket number" in the port enables the level 1 Pup input handler to distribute
each incoming Pup to the correct PupSoc by comparing
pbi>>PBI.pup.dPort.socket (the Pup destination socket number) with
soc>>PupSoc.|clPort.socket of each active PupSoc until amatch is found.

Second, the source port fields of each outgoing Pup generated by the process are
defaulted (if zero) to the values given in the local port address.

frnPort Foreign port address (a Port structure). This provides information for defaulting
the destination port fields of outgoing Pups, in the same manner as described for
IclPort.

psib Pup Socket Info Block (PSIB), which contains the information described below.
Sinceit is generaly the same for all sockets, there is a"default PSIB" (dPSIB)
whose contents are copied into the psib for each socket when the socket is
created.

maxTPBI The maximum total number of PBIsthat may be assigned to the socket. Since

free PBIs are taken from a common pool, some meansis required for ensuring

Cleared version of May 24, 1981

Pup Package January 25, 1981 90
that no single socket can usurp more than a certain share of the total available
PBIs (which, aside from reducing performance for other sockets, could lead to
deadlocks in higher-level protocolsif the free pool became exhausted). This is
discussed further in the descriptions of the GetPBI and ReleasePBI procedures.
numTPBlI Thetotal number of additional PBls that may be assigned to the socket (i.e,
maxTPBI minus the number of PBIs already assigned).
max| PBI The maximum number of PBIsthat may be assigned to the socket for input use.
numl PBI The number of additional PBIs that may be assigned for input (i.e., max| PBI
minus the number of PBIs already assigned for input).
maxOPBI The maximum number of PBIsthat may be assigned to the socket for output use.
numOPBI The number of additional PBIsthat may be assigned for output (i.e., maxOPBI
minus the number of PBIs already assigned for output).
doChecksum If true, the Pup software checksum is checked by the level 1 softwarein incoming
Pups (before being given to the process) and generated in outgoing Pups. The
default valueistrue.
The following statics are defined within the level 1 module and may be referenced externally (though only
afew arelikely to be of interest):
dPSIB Pointer to default socket info block, used to provide initial valuesin part of each
PupSoc when it is created.
gatewaylQ Pointer to queue on which received Pups not addressed to this host are placed. Unless
the Gateway package isloaded, gateway|Q isinitialized to pbiFreeQ.
lenPup The length of the largest possible Pup, in words (derived from maxPupDataBytes).
lenPBI Thelength of aPBI, in words (derived from lenPup). Note that al PBls are of the same
size and can each contain a Pup of maximum length.
[PupSoc The length of a PupSoc, in words.
maxPupDataBytes The maximum number of data (content) bytesin aPup. Thisisinitialized to the
"pupDataBytes" argument to InitPupLevel 1 and remains constant thereafter.
ndbQ Pointer to queue of NDBs for al the physically connected networks (see level 0
description). The first NDB on ndbQ is considered to be the "default” network, i.e., the
one sent to if a process specifies a Pup destination network of zero.
numNets The number of directly connected networks (always 1 in an Alto).
pbiFreeQ Pointer to queue of free PBIs.
pbilQ Pointer to queue on which incoming Pups are placed by level O interrupt routines.
pbiTQ Pointer to queue on which outgoing Pups are ordinarily placed after transmission.
pupCtxQ Default context queue onto which new contexts created by the Pup package will be
appended. Thisisinitialized to the "ctxQ" argument to InitPupLevel 1.
pPUupRT Pointer to routing table (described later).
pupZone Default zone from which allocations will be made by the Pup package. This is

initialized to the "zone" argument to InitPupLevel1.

Cleared version of May 24, 1981

Pup Package January 25, 1981 91
socketQ Pointer to queue of all active PupSocs.

Thelevel 1 module must be initialized by calling InitPupLevell, asfollows:

InitPupL evel 1(zone, ctxQ, numPBI, pupDataBytes [defaultPupDataBytes], umRTE [9])
Initializes all the level 1 software, and also calls the appropriate level O initialization (InitAltoEther in
the Alto version). "zone" is afree-storage zone from which permanent allocations may be done.
"ctxQ" isapointer to a queue of contexts to which the contexts created by this procedure may be
appended. "numPBI" isthe number of PBIsto be allocated (from "zone") and appended to the
pbiFreeQ.
The optional argument "pupDataBytes" specifies the maximum number of data (content) bytesto be
permitted in any Pup; it must be even and by convention should not be greater than 532. A smaller
maximum Pup length is useful in some applications not requiring high throughput, since the PBIs are
thereby smaller and one can have more of them at the same cost in memory. The default value of this
parameter is 532.
The optional argument "nUMRTE" specifies the number of entriesto allocate in the Pup routing
table. These are used as a cache for routing information, and there should be at least as many entries
asthere are likely to be simultaneous conversations with hosts on different networks.
InitPupL evel 1 does the following: it creates the queues pbil Q, pbiTQ, pbiFreeQ, socketQ, and
ndbQ; allocates "numPBI" PBIs and appends them to pbiFreeQ; creates the routing table PUpPRT;
creates the default Pup socket info block dPSIB; callsthe level O initiaization procedure(s); creates
the PupLevel 1 and GatewayL istener background contexts (to be described later); and broadcasts
requests for gateway routing information. The total amount of storage taken from "zone" (in words)
is approximately numPBI*290 + |enPSIB + lenPupSoc + numRTE*5 + 250 + the amount needed
by level Oinitialization. InitPupLevell also calls the external procedure InitForwarder (ordinarily
defined in PupDummyGate.br), initializes the static pupZone to "zone" and pupCtxQ to "ctxQ", and
sets up the constants maxPupDataBytes, lenPup, and lenPBI on the basis of "pupDataBytes".
InitPupLevell does not call Block, soit is permissible to call it from initialization codethat is not
running as a context.

DestroyPupL evel1()
Undoes the actions of InitPupLevell. Thisincludes caling all thelevel O "destroy" procedures (via
the NDB.destroy operationsin all NDBs on ndbQ) and releasing all storage allocated from pupZone.
DestroyPupLevel1 isin the Puplinit module, which must therefore be retained rather than discarded
if this procedure isto be used.

The following procedures are provided for creating and destroying sockets:

OpenL evel 1Socket(soc, IclPort [defaulted], frnPort [zeroes])
Creates a PupSoc. "soc" should point to a block of size lenPupSoc. "IclPort”, if specified and
nonzero, points to a Port structure describing the desired local port address. "frnPort", if specified
and nonzero, points to a Port structure describing the desired foreign port address. The"soc" is then
appended to socketQ, thereby enabling reception of Pups directed to it.
Each field in the local port addressis subject to defaulting if either the "IclPort" is unspecified or the
field is zero, in the following manner. If the socket number is unspecified, one is chosen at random
(it isguaranteed unique). If both the network and host numbers are unspecified, they are filled in
with areasonable local host address (perhaps based on the supplied "frnPort"). Ordinarily, one
should allow the socket number to be defaulted unless one intends the processto reside at a "well-
known socket" (asin aserver), and one should always alow the network and host numbers to be
defaulted.
If "frnPort" is unspecified, the foreign port in the "soc" is set to zeroes. Then, if the foreign network
number is zero (generally for the purpose of designating the "directly connected” network), it is set to
the connected network’ s actual number, if known. Note that the "IclPort" and "frnPort” fieldsin the

Cleared version of May 24, 1981

Pup Package January 25, 1981 92
"soc" are copied from the corresponding arguments to OpenlL evel 1Socket; the argument ports are
not modified and are not needed thereatfter.

Closel evel 1Socket(soc)

Causes "soc" to be removed from socketQ. This procedure blocks until all PBIs assigned to the
socket have been recovered and released. If "soc" isnot in fact on socketQ, this procedure cals
SysErr(soc, ecNoSuchSocket).

Control over assignment of PBIsto sockets is accomplished in a manner that is more complicated to
describe than to implement. Associated with each socket are three numbers that determine the maximum
number of PBIsthat may be assigned to a socket simultaneously. The "total" (soc>>PupSoc.maxTPBI) is
the maximum total number of PBIs permitted, while the "input” and "output” values
(soc>>PupSoc.max|PBI. soc>>PupSoc.maxOPBI) determine (independent of the overall total) the
maximum number of PBIsthat may be assigned for those respective purposes. The "total” maximum
prevents a single socket from usurping more than a fixed share of the total PBIsin the system; within that,
the "input" and "output” limits, if properly set, prevent al of a socket’s allocation from being devoted to
packets going in one direction (with resultant potential deadlocks). The "total" allocation must be greater
than either "input" or "output”, but need not be equal to their sum, since in most applications one expects
heavy demands on PBIsin only asingle direction.

The actual number of PBIs assigned to a socket at a given moment is reflected in three other cellsin the

socket: soc>>PupSoc.numTPBI, soc>>PupSoc.numlPBI, and soc>>PupSoc.numOPBI. These are initialized

to the corresponding "max" values, decremented whenever a PBI is assigned to the socket, and
incremented when the PBI isreleased. The code responsible for allocating and releasing PBls (the

PupL evel 1 background process for input PBIs and the GetPBI procedure for output PBIs) do not permit

any of these counts to go below zero; if allocating another PBI would cause a count to be decremented

below zero, PupLevel 1 will smply discard the Pup and release the PBI, and GetPBI will either block or fail
(see below).

The alocations in the socket are also useful when destroying the socket. At the time Closel evel 1Socket is
called, there may be PBlsthat are assigned to the socket but that cannot be located at the moment because
they reside on some other queue (such as the Ethernet output queue or the pbiTQ). Closel evel 1Socket
simply blocks until soc>>PupSoc.numTPBI equals soc>>PupSoc.maxTPBI, at which point it is known that
all PBls have "returned" to the socket and been released.

PBIs may be added to the free pool simply by alocating blocks of size lenPBI and "Enqueue"ing them on
pbiFreeQ. One could also remove PBIs from the system by "Dequeue’ing them from pbiFreeQ and
freeing them, but of course one has no control over which PBIs are available for release. Note that such
changes in the total number of PBIs are not automatically reflected in any socket allocations or in the

default allocations contained in dPSIB.

SetAllocation(soc, total, input, output)

Changes the number of PBIs that may be assigned to the socket. "total”, "input”, and "output” are
the new maximum values. The "total" must be greater than either the "input” or "output”.

SetAllocation need be called only if the desired allocations differ from the defaultsin dPSIB.
Alternatively, one may manually change the contents of dPSIB; note that the "num" and "max"

values for agiven allocation must be the same and that the "total" allocation must be greater than or
equal to the "input" and "output" allocations. Changing dPSIB does not affect allocationsin sockets
that have aready been opened. Theinitial "total" alocation in dPSIB is numPBI-numNets, where
numPBl is the argument to InitPupLevel 1 that determines the number of PBIsinitially created and
numNets is the number of directly-connected networks (normally onein an Alto). The initial

"input" and "output" alocations are each one less than the "total”.

GetPBI (soc, returnOnFail [false]) = PBI

Assigns aPBI from pbiFreeQ and chargesit to the socket, for output use (that is, it decrements
soc>>PupSoc.numTPBI (total) and soc>>PupSoc.numOPBI (output)). If the socket has exhausted its
total or output allocation or the pbiFreeQ is empty, then GetPBI blocks unless returnOnFail is true,
in which case it returns zero. The PBI returned has its Pup header zeroed so that if the caller later

transmits the Pup without setting up source and destination port addresses, the addresses will be

Cleared version of May 24, 1981
Pup Package January 25, 1981 93

correctly defaulted from the socket. The PBI’s"queue" pointer is set to pbiTQ, resulting in
automatic release of the PBI after it istransmitted. The PBI’'s "socket" pointer is set to "soc", thereby
recording the socket to which it has been assigned.

ReleasePBI (pbi)
Releases the "phi" and appropriately credits the allocations in the socket to which it was assigned.

Compl etePup(pbi, type[], length [])

Causes "phi" to be completed and transmitted. "Completion” consists of the following operations:
"type" and "length”, if supplied, are stored in the Pup type and length fields; any zero fieldsin the
Pup source or destination ports are defaulted to the values given in the owning socket’s local and
foreign port addresses, respectively; the transport control byte (used by gateways) is zeroed; then, if
the socket’s doChecksum flag is on (the default unless changed explicitly), a software Pup checksum
is computed and stored in the Pup. The caller is expected to have set up the Pup’s D, and contents
(if any) and its type and length if not supplied inthe call. Finally, the PBI isrouted to its destination
and queued for transmission.
After transmission, the PBI is appended to pbi>>PBI.queue, which (unless changed explicitly by the
caller) will be pbiTQ, resulting in automatic release of the PBI. If adifferent queueis specified for
disposal of the PBI (asis done in the BSP package, for example), then the caller isresponsible for
keeping track of the PBI, and, in particular, for ensuring that all PBIs assigned to the socket have
been released before destroying the socket.
A special mechanism exists for broadcasting a Pup on al directly-connected networks. If the allNets
bit is set in the PBI status word, then instead of routing the Pup to the destination stated in the Pup
header, CompletePup sends the Pup out on each directly-connected network. For each network, the
local host address on that network Is substituted for the network and host numbers in the Pup source
port, and the local network number is also substituted for the destination network field (the checksum
is recomputed each time thisis done). The "queue” word in the PBI must be pbiTQ (the default) for
this feature to work properly.
The allNets mechanism ordinarily causes a Pup to be sent on each directly-connected network,
whether or not the network’ sidentity is known. However, if the bypassZeroNet bit is also set, the
Pup will not be sent on networks whose identity is not known.
Distribution of received Pups to the correct sockets is the responsibility of a background process caled
PupLevell. When aPBI appears on pbilQ (where it was | eft by the level 0 input handler), PupLevel1 first
performs some checks on the Pup destination address, and discards the PBI if it is not destined for a
process in the local host (actually, it enqueuesit on gateway!Q, which, assuming the PupDummyGate
modul e has been loaded, is the same as pbiFreeQ). It then searches the socketQ for a socket whose local
socket number matches the Pup destination socket number. If no such socket is found, the PBI is passed to
SocketNotFound(pbi), which generates an Error Pup and discards the packet (but could be madeto do

something else by clobbering the SocketNotFound procedure static with a different handling procedure).
Assuming the destination socket is found, PupLevel 1 then checks the Pup checksum (assuming the socket's

doChecksum flag is on), discarding the PBI if it isincorrect. Finally, the socket’s "total" and "input" PBI
allocations are checked. If either is exhausted, the PBI is discarded (causing an Error Pup to be returned to
the Pup’ s source); otherwise, the allocations are updated and the PBI is appended to the socket’s Q.
PupLevellisaso responsible for releasing PBIs on the pbiTQ, which is the default queue to which
outgoing packets are appended after transmission.

Another process, GatewayL istener, is responsible for dynamically maintaining the routing table PUpRT
and updating it with information periodically received from gateways. While routing and routing table
maintenance are operations performed automatically (by CompletePup and GatewayL istener), the format
of the routing table is of possible interest to callers in certain cases--for example, in deciding which of
several possible remote serversisthe best choice in terms of network topology (see the PupNameL ookup
module for an example of this). The following description is much more than most programmers will wish

to know about.

Cleared version of May 24, 1981

Pup Package January 25, 1981 94
The RT isadictionary object consisting of routing table entries (RTES) keyed by network number, each
containing information about a specific network. For agiven RTE, if the "hops" field is zero, the network
isone to which the local host is directly connected; otherwise, the network may be reached viathe gateway
whose host number is given in the "host" field (the "hops" field indicates the number of gateways believed
to lie along the route to the destination net). In either case, the "ndb" field points to the NDB for the
immediate destination network (see "Pup Specifications'). If the "hops" field is greater than "maxHops'
(currently 15), the network is known to be inaccessible, and the remainder of the RTE should not be
believed.
If no RTE existsfor a particular network, then we know nothing about that network and can't route Pups
toit. Therouting table istreated as a cache of recently-used routing information. When an attempt is
made to transmit a Pup to a network not represented in the routing table, new routing information is
obtained from anearby gateway and an RTE for that network isinserted into the routing table (possibly
displacing some other RTE that has not been used recently). Note, however, that RTEs for directly-
connected networks are never removed from the routing table.
Network number zero in the routing table is special. It refersto a network known to be directly connected
to thelocal host (but whose identity may or may not be known, i.e., we may or may not know its network
number). Pups handed to CompletePup for transmission to network zero will be sent over this network.
Thisfacility is essential during initialization, before any gateways have been located and the remainder of
the RT filled out. It also permits communication among hosts on a network whose identity is unknown
due to there being no connected gateways.
Therouting table as awholeis treated as an "object”, with standard operations defined by a Hash Table
Preamble (HTP). This object is misnamed, since it need not be implemented by means of a hash table, and
is not in the present implementation of the Pup routing table. The procedures described below are merely
renamed versions of the Alto OS's Call0, Calll, etc. The operations return pointersto RTEs, and the caler
may operate on the individual RTE by means of ordinary structure references. The defined operations
are
HLookup(rt, net, dontPromote|[...false]) = RTE or 0
Looks up "net" in the routing table "rt", returning a pointer to the RTE if it is found and zero if not.
Unless "dontPromote” is supplied and true, the RTE is marked as having been referenced most
recently.
Hinsert(rt, net) = RTE
Insertsan RTE for "net" into "rt", setting the "net" field of the RTE and zeroing the rest of the entry.
If an entry aready existsfor "net", it is overwritten. If no entry already exists, anew oneis created,

possibly displacing the least recently referenced RTE.

HDelete(rt, net)
Deletesthe RTE for "net" in "rt", if one exists.

HEnumerate(rt, proc, arg)
Enumerates all RTEsin "rt", calling proc(rte, arg) for each one.

The following miscellaneous procedures are of possible interest to callers:

LocateNet(net) =rteor 0
Attemptsto locate aroute to "net". If an RTE for "net" existsand isvalid (i.e., hops not greater than
maxHops), apointer to it isreturned. Otherwise, activity isinitiated to locate a route to "net" and
zerois returned.

PupError(pbi, errorType, string)

Causes an "Error" Pup to be returned to the sender of "pbi", containing the specified "errorType"
and "string". The PBI isreleased in the process. Consult the "Pup Error Protocol” specification for
more information. PupError is called from several placesinside PupLevel 1 when incoming Pups are

rejected for one reason or another.

ExchangePorts(pbi)

Cleared version of May 24, 1981
Pup Package January 25, 1981

Exchanges the Pup source and destination portsin "pbi". Useful when sending a packet back
it came from (possibly after modifying its contents).

AppendStringToPup(pbi, firstByte, string)
Appends the supplied "string" to the Pup in "pbi", starting at byte
pbi>>PBl.pup.bytesirstByte, then sets the Pup length to include the data so stored. Useful

95

where

position
for

generating Pupsthat end in (or consist entirely of) a string, such as Error, Abort, and Interrupt Pups.

SetPupDPort(pbi, port)
Copies the specified "port" into the Pup destination port field of "pbi".

SetPupSPort(pbi, port)
Copies the specified "port" into the Pup source port field of "phi".

SetPupl D(pbi, pupl D)
Copies the two words pointed to by "puplD" into the Pup ID field of "pbi".

FlushQueue(queue)
Dequeues and releases all PBIs presently on "queue”.

OnesComplementAdd(a, b)
Returns the ones-complement sum of "a" and "b".

OnesComplementSubtract(a, b)
Returns the ones-complement difference between "a" and "b".

LeftCycle(word, count) = result
Returns the result of left-cycling "word" by "count" mod 16 bits.

MultEq(adrl, adr2, nWords[...2]) = true or false
Compares the nWords words starting at adr1 with the corresponding words starting at adr2,
true iff they all match.

Max(a, b); Min(a, b)
Return the arithmetic maximum or minimum, respectively, of "a" and "b". These are treated
signed integers and must differ by less than 2/15.

Doubl el ncrement(adr, offset)
Adds the signed 16-bit integer "offset" to the 32-bit number pointed to by "adr". Note that
negative "offset" will cause the 32-bit number to be decremented.

DoubleDifference(adrl, adr2) = value
Returns as a 16-hit signed integer the result of subtracting the 32-bit number pointed to by
from the one pointed to by "adr1". If the two numbers differ by more than 2715, theresult is
2715-1 or -2/15, depending on the sign of the 32-bit difference.

DoubleSubtract(adrl, adr2)

Subtracts the 32-bit number pointed to by "adr2" from the one pointed to by "adr1", and leaves
resultin"adrl".

4. Rendezvous/Termination Protocol Interface

The RTP module (file PupRTP) contains primitives for establishing and breaking connections with
processes according to the Rendezvous/Termination Protocol.

The local end of a connection is maintained within the confines of an RTPSoc, an RTP socket

returning

"adr2"
either

the

foreign

Structure

Cleared version of May 24, 1981

Pup Package January 25, 1981 96
(defined in PUpRTP.decl). This beginswith alevel 1 Pup socket (PupSoc), but includes the following
additional information:
ctx A pointer to the background context maintaining the connection.
state The state of the connection (see below).
connlD The connection ID (see "Pup Specifications").
rtpOtherPupProc A procedure called upon receipt of any Pup that is not part of the
Rendezvous/Termination Protocol.
rtpOtherTimer A timer for use by higher levels of protocol.
rtpOtherTimerProc A procedure called when rtpOther Timer expires.
There is some other information (wasListening, rtpTimer) used by the RTP module but not of interest to
external programs.
At agiven moment, an RTPSoc may be in one of a number of "states'. A detailed explanation of the
meanings of these states may be found in the memo "Pup Connection State Diagram” (file
<Pup>RTPStates.press).
stateClosed No connection exists: either none has ever been created or a previously existing
connection has terminated.
stateRFCOut The local process has initiated a request for connection (RFC) to some foreign
process. A reply is expected from the remote process.
statel istening Thelocal processis "listening” for an RFC from any foreign process.
stateOpen The connection is considered by both parties to have been established. What the
cooperating processes do with this connection is a matter of higher-level protocol
(eg., BSP).
stateEndin The foreign process has requested that the connection be terminated, and is
awaiting a confirmation from the local process.
stateEndOut Thelocal process has requested that the connection be terminated, and is
awaiting a confirmation from the foreign process.
stateDally A transitory state having to do with the termination handshake (see "Pup
Specifications’).
stateAbort The connection has been aborted abnormally by the foreign process.
An RTPSoc is created by calling OpenRTPSocket, which performs various initialization, creates a
background process to manage the connection, and interacts with some foreign process in one of three
way's (see below) to open a connection. Once the connection is open, the RTP background process
monitors the socket for arrival of Pups requesting that the connection be closed or aborted, and updates
the state of the socket appropriately. The local process may also request explicitly that the connection be

terminated, by calling CloseRTPSocket.
The procedures defined in the RTP modul e are the following:

OpenRTPSocket(soc, ctxQ [pupCtxQ], openMode [model nitAndWait], connl D [random], otherProc
[DefaultOtherPupProc], timeout [default Timeout], zone [pupZone]) = true or false
Causes an RTP socket to be created and optional interactions with aforeign process to be initiated.
"soc" isablock of length lenRTPSoc which must already have beeninitialized asalevel 1 socket

Cleared version of May 24, 1981

Pup Package January 25, 1981 97
(PupSoc) by aprior call to OpenLevel1Socket. (An external static "IRTPSoc" exists whose value is
the length of an RTPSoc in words.) Both the local and foreign port addresses (the "I clPort" and
"frnPort" fields in the PupSoc) must be completely established, unless "openMode™ is
"listenAndWait" or "listenAndReturn”, in which case only the local socket number
(soc>>PupSoc.IclPort.socket) need be established.

"ctxQ" is acontext queue to which a context created by this procedure may be appended. It defaults
to pupCtxQ (the "ctxQ" passed to InitPupLevel1).

"openMode" specifies the manner in which the connection isto be opened. If it is
"model nitAndWait", arequest for connection to the foreign process is initiated, and
OpenRTPSocket then blocks until either the answering RFC is received and the connection’s state
becomes open (in which case it returnstrue) or an error occurs (in which case the RTPSoc is closed
and OpenRTPSocket returnsfalse). If it is"modelnitAndReturn”, the request isinitiated in a similar
manner, but then OpenRTPSocket returns true immediately and it is the caller’ s responsibility to
monitor the subsequent state of the connection.

If "openMode" is "modeListenAndWait", the socket is placed in a"listening” state. When a request
for connection is received from some foreign process, areply is generated and the connection
becomes open, and OpenRTPSocket returnstrue. If the modeis "modeListenAndReturn”,
OpenRTPSocket returns true immediately and it is the caller’ s responsibility to monitor the
subsequent state of the connection.

If "openMode" is "model mmediateOpen", the socket isimmediately placed in the open state (it is
assumed that the caller has already performed a rendezvous with the foreign process in some other
manner) and OpenRTPSocket returns true.

"connlD" is a pointer to a two-word vector specifying the connection ID (see "Pup Specifications").
If not specified, a connection ID is chosen at random. "connlD" need never be specified if
"openMode" is one of the listening modes.

"otherProc" is a procedure to be called when anon-RTP Pup is received by the socket. Thiswill be
described in more detail later. If not specified, "otherProc" defaults to DefaultOtherPupProc, a
procedure that simply releases any PBI it is passed (one may change the default by clobbering the

DefaultOtherPupProc static with something else).

"timeout" specifies the maximum time OpenRTPSocket will wait (if "openMode" is
"model nitAndWait" or "modeListenAndWait") before timing out and returning false. It (and al
other "timeout" arguments in the Pup package) isin units of 10 milliseconds, with a maximum lega
value of 2715 (alittle over 5 minutes), according to the conventions established in the Timer Package.
If unspecified, "timeout" defaults to “defaultTimeout”, a static defined in this module, whose value
in the released package is 6000 (i.e., 60 seconds; thisis set by the parameter "defaultDefaultTimeout"
in PupParams.decl).
"zone" is afree-storage zone from which a context block (of size rtpStackSize) may be alocated. |If it
is not specified, pupZone (the "zone" passed to InitPupLevel1) isused. Note: OpenRTPSocket cals
InitializeContext, so the Contextlnit module must be resident (despite what the Context Package
writeup says).

CloseRTPSocket(soc, timeout [...default Timeout]) = true or false
Requests that the connection rooted in the RTPSoc "soc" be terminated. If "timeout” is nonzero, a
normal termination is attempted if possible; if zero (or the attempted normal termination times out),
the connection is aborted (terminated abnormally). When the connection has been closed, the
context created by OpenRTPSocket is destroyed and returned to the zone from which it was
allocated. CloseRTPSocket then returns true if the connection was terminated normally and false if
abnormally. Thelevel 1 PupSoc pointed to by "soc" still exists, and it isthe caller’s responsibility to

dispose of it appropriately (generally by calling Closel evel 1Socket).
The process created by OpenRTPSocket (called RTPSocketProcess) has several responsibilities. First, al

Cleared version of May 24, 1981

Pup Package January 25, 1981 98
Pups arriving on the socket’siQ are dequeued and inspected. Ones whose types are part of the
Rendezvous/Termination protocol are processed internally. All protocol interactions (including replies,

retransmissions, and local state changes) are handled automatically.

Received Pups that are not part of the RTP are passed to the "rtpOtherPupProc” procedure, which is
initialized to the "otherProc" argument in OpenRTPSocket. More specificaly, the statement

(soc>>RTPSoc.rtpOtherPupProc)(pbi)

is executed, and it is up to the called procedure to appropriately process and dispose of the PBI. Since this
call is made within the context of the RTPSocketProcess, which has only "rtpStackSize" (130 as rel eased)

words of stack space, the called procedure cannot make heavy demands on the stack without risk of stack
overflow. One might increase rtpStackSize (a static defined in this module, whose initial value is given in
PupParams.decl as "defaultRTPStackSize'"), but the safest course of action is for the called procedure

simply to enqueue the PBI on some queue looked at by another process with more stack space available to
it. (One should note, however, that the "rtpOtherPupProc” procedure defined by the BSP module, to be
described in the next section, manages to do all its work--a significant amount--without overflowing the

RTP process' s stack. The main potential pitfall isin calling system procedures such as Wsthat require very
large amounts of stack space in some cases.)

"Abort" and "Error" Pups, while handled by RTPSocketProcess (for their effects on the socket’ s state), are
also passed on to the "rtpOtherPupProc" procedure, for purposes such as displaying the Pup’stext to the
user. The RTP module distinguishes between "fatal" and "non-fatal" sub-types of Errors, treating the
former the same as an Abort (thereby placing the connection in the "Abort" state) and ignoring the |atter;
both kinds, however, are passed to "rtpOtherPupProc”.

Additionally, the RTPSocketProcess checks for expiration of atimer called "rtpOtherTimer" in the
RTPSoc. If it expires, the procedure given in "rtpOtherTimerProc" is called, with the socket as its
argument. Thisfacility is used in the BSP module, which also requires the ability to do asynchronous

processing. "rtpOtherTimerProc" isinitialized to Noop when OpenRTPSocket is called.
The following miscellaneous procedures defined in the RTP module are of possible interest to callers:

RTPFilter(pbi, checkFrnPort, checkl D) = true or false

Does selective filtering of "phi" against parameters in the socket to which the PBI is assigned, and
returnstrue if the PBI is accepted and false if regjected. First, broadcast Pups (destination host Zero)
are dwaysrejected. Then, if checkFrnPort is true, the source port address of the PBI is checked for
equality with the foreign port address given in the socket. Finally, if checkID istrue, the Pup ID in

the PBI is checked for equality with the connection ID in the socket.
CompleteRTPPup(pbi, type, length)

Stores "type" and "length" in the respective fields of the Pup, copies the connection ID from the
socket to the Pup, and finally calls CompletePup(pbi) to send it on its way.

5. Byte Stream Protocol Interface

The BSP module (files PupB SPStreams, PupBSPProt, and PupBSPa) contains procedures for sending and
receiving error-free, flow-controlled byte streams to and from aforeign process, and for dealing with the
other primitives defined by the BSP (namely Marks and Interrupts).

A process' s interface to the BSP moduleis by way of a BSPSoc, a BSP socket structure, whichisa further

extension of an RTPSoc (which, it will be recalled, is an extension of a PupSoc). The BSPSoc contains a
large amount of additional information, most of which fortunately is not of interest to external programs.

Theitemsthat are of interest are the following:

bspStatus A word containing various status bits, including the following three:

Cleared version of May 24, 1981

Pup Package January 25, 1981 99
markPending A Mark has been encountered while reading the incoming byte stream.
Further attempts at input (via Gets or BSPReadBlock) will fail until this
bit is cleared (either explicitly or by calling BSPGetMark).
interruptin An Interrupt has been received. If the caller depends on this bit for
noticing the arrival of Interrupts, then it must clear the bit explicitly after
doing so. Interrupts arriving in close succession will not be
distinguishable as separate events unless they are intercepted via the
"bspOtherPupProc”" mechanism, described later.
nol nactivity Timeout Thisflag, normally false, may be set to true to disable an automatic
timeout mechanism that aborts the BSP connection if the foreign process
does not respond to any BSP protocol requests for two minutes. The
purpose of thisisto detect that a connection has died (due to network

failure or the foreign process crashing). Being ableto disable this timeout
mechanism is handy during debugging.

bspOtherPupProc A procedure called upon receipt of any Pup not part of the BSP (or RTP).
bspStr A block containing a BSPStr, a BSP stream structure. This contains the
dispatches for interfacing to the operating system’s generic stream-
handling procedures (Gets, Puts), plus some information specific to the
BSP stream.
A BSP stream is created by first opening a connection to aforeign process (by means of the RTP), then

calling the following procedure:
CreateBSPStream(soc) = str

Creates and initializes a BSP socket, and returns a pointer to the stream block within it. "soc" must
point to aregion of length lenBSPSoc (which is the value of an external static IBSPSoc), and it must
already support one end of an open RTP connection (by having been passed to OpenL evel1Socket
and then OpenRTPSocket). If the state of the connection is not stateOpen or stateEndin,
CreateBSPStream returns zero. Otherwise, the stream is completely initialized and the pointer to it is
returned. See the sample program at the end of this document for an example of the proper sequence
of operations for opening a BSP stream from scratch.

All the generic stream procedures (Gets, Puts, etc.) must be passed "str" as an argument, as should the

procedures BSPReadBlock and BSPWriteBlock. However, all other operations on the socket (including

specialized BSP functions such as BSPGetMark) must be passed "soc". When necessary, "str" and "soc"

may be computed from each other by the following statements:

str = soc+offsetBSPStr
soc = str-offsetBSPStr

where offsetBSPStr is an external static defined in the BSP package.

The defined generic stream procedures are as follows. The descriptions of Gets and Puts assume that the
default stream error-handling procedure (invoked by Errors(str, ec)) isin use; the real truth appearsin the
description of Errors.

Gets(str, timeout [...-1]) = byteor -1

Attempts to return the next byte from the BSP stream "str"; returns -1 on any failure. A failure will
result If the connection has become closed or aMark has been encountered in the incoming stream.
If "timeout” is -1 (the default), Gets waits indefinitely for datato arrive (or some failure condition to
arise); if other than -1, it waits up to "timeout” (units of 10 milliseconds) and then gives the failure
return.

Note that occurrence of the timeout condition does not imply anything about the health of the

connection; the timeout feature is provided entirely for the caller’ s convenience, and has nothing to

Cleared version of May 24, 1981
Pup Package January 25, 1981

do with the internal connection inactivity timeout. If the connection fails, the connection
(soc>>RTPSoc.state) will change to something other than stateOpen.

Puts(str, byte, timeout [...-1]) = true or false
Attempts to output "byte" to the BSP stream "str"; returns true on success and false on failure.
failure will result if the connection has become closed or the operation times out. The "timeout
defined as for Gets, with -1 meaning wait indefinitely. Note that in general, outputting a byte to
BSP stream merely causes that byte to be appended to a partially-constructed Pup in memory;
when aPup isfilled up is any packet actually sent over the net. BSPForceOutput (described
must be called to cause a partially-filled Pup to be closed out and transmitted immediately.

Endofs(str) = true or false
Returnstrueif thereis not presently any datato be read from the BSP stream "str" or aMark
been encountered. Note that this definition of Endofsis analogous to that for "keys" as opposed
that for disk files; i.e., so long as the connection is still open, Endofs(str) being true says only
thereis not now any data to be read, not that there won’t be data at some time in the future.

Closes(str) = true or false
Closes the BSP stream "str" and destroys the associated socket, as detailed in the description
CloseBSPSocket (below).

Errors(str, ec) = value
The stream error procedure (which isinitialized to BSPErrors by CreateBSPStream) is called

various error conditions arising in Gets and Puts. The error code "ec" will be one of the following:

ecBadStateForGets Gets has failed because the connection is no longer open. This can
either because an Abort or fatal Error is received or because

connection’s inactivity timeout (2 minutes) expires. (The timeout may

disabled for debugging purposes by
soc>>BSPSoc.nolnactivity Timeout to true.)

ecGetsTimeout Gets has failed because no data became available for reading within
timeout specified in the call to Gets.

ecMarkEncountered Gets has failed because it has encountered a Mark in the stream.

ecBadStateForPuts Puts has failed because the connection is no longer open.

ecPutsTimeout Puts has failed because it was not possible to output the byte within

timeout specified in the call to Puts.

In each case, the Gets or Puts returns the result of calling Errors with the corresponding error
The default Errors procedure returns -1 when passed any of the Gets error codes and false
passed one of the Puts error codes, thereby obtaining the failure behavior presented earlier in
descriptions of Gets and Puts.

The remaining procedures operate on a"soc" (BSPSoc) rather than a"str", since they are peculiar to BSP.

CloseBSPSocket(soc, timeout [...defaultTimeout]) = true or false

Closes the connection and destroys the BSPSoc pointed to by "soc”. Firgt, if the connection is still

areasonable state, any pending output is transmitted; CloseBSPSocket will wait up to "timeout"
successful acknowledgment of thisdata. Next, the connection is terminated by a call
CloseRTPSocket (the description of which includes the interpretation of "timeout"). Then all

till residing on the BSPSoc’ s various queues are released. Finally, the socket is destroyed by acall

Closelevel1Socket. The result returned istrueif the connection was closed normally, false
abnormally.

BSPGetMark(soc) = byte
Returns the value of the pending Mark byte in the incoming stream, and clears the markPending

100

state

A

is

a

only
below)

has
to
that

of

under

occur
the

be
setting

the

the

code.
when
the

in
for
to
PBls
to

if

flag

Cleared version of May 24, 1981
Pup Package January 25, 1981 101

so asto permit future calls to Gets to read data past the Mark in the stream. This procedure will call
SysErr(soc, ecBadBSPGetMark) if aMark has not in fact been encountered.

BSPPutMark(soc, markByte, timeout [...-1], sendNow [false]) = true or false

Inserts the specified "markByte" into the outgoing stream. Calling this procedure causes all data up
to and including the Mark byte to actually be transmitted immediately. The interpretation of
"timeout" and the result returned by the procedure are the same as for Puts; "sendNow" is described

under BSPForceOutput (below).
B SPForceOutput(soc, sendNow [falsg])

Forces any partially-filled output Pup to be transmitted immediately. This procedure will never
block. If "sendNow" istrue, the BSP package will licit an immediate acknowledgment, thereby
expediting the process of flushing the local output queue of unacknowledged Pups. The caller should
set this argument to true when it expects not to send more datafor awhile, particularly if it is about to

turn around and receive some data over the same stream.

BSPPutlnterrupt(soc, code, string, timeout [...-1]) = true or false

Generates a BSP Interrupt Pup (see "Pup Specifications") using the specified "code” for the
Interrupt Code and "string" for the Interrupt Text. The procedure returns true unlessit failed to
send the Interrupt due either to the connection no longer being open or to exhausting the specified
"timeout”.
The BSP module accomplishes much of itswork as a result of being given control by the socket's
RTPSocketProcess context through two paths: the "rtpOtherPupProc” procedure, called when a non-RTP
Pup is encountered, and the "rtpOtherTimerProc" procedure, called when the "rtpOther Timer" expires.
These three cells in the RTPSoc structure are renamed "bspPupProc”, "bspTimer", and "bspTimerProc"
within the BSP module. By this means, the management of both incoming and outgoing byte streams is
accomplished automatically (including the generation of acknowledgments and retransmissions).
Received Pups that are not part of either the RTP or the BSP are handed to the procedure given in the
"bspOtherPupProc” cell in the socket. Thisisinitialized to the previous contents of the socket's
"rtpOtherPupProc” by CreateBSPStream (which then stores a pointer to the BSP modul€e’s own
BSPPupProc into the latter cell). The earlier description of "rtpOtherPupProc” (in the section on the RTP
module) applies to "bspOtherPupProc".
Received Interrupt packets are also passed to "bspOtherPupProc" after being processed by the BSP
module. Note that an Interrupt passed in this manner has been verified to conform to protocol (thisis the
case also for Abort and Error packets passed up from the RTP module) and may therefore be "believed”.
Any other type of packet, on the other hand, has had no checking done on it beyond the level 1 interface
(where the destination port and checksum were verified).
A note on allocations: this BSP implementation probably will not work at all unless the socket’s PBI
alocations are at least 3, 2, and 2 for "total”, "input”, and "output” respectively. High throughput will be
gained only by giving the socket somewhat larger allocations (say, 6 to 10 PBIs) for the direction(s) in
which high throughput is desired.
In aprogram with at most one active BSP connection, that socket should be alocated al of the PBlIsin the
system except one per directly-connected network (there must always be one extra PBI available for
receiving incoming packets on each network); thisis the default allocation established in dPSIB by
InitPupLevell. Inaprogram with several active connections, one should adjust individual socket
allocations appropriately (though probably not simply by dividing the total PBIs by the nhumber of sockets,
since doing so typically leads to underutilization of PBIS). Assuming there are plenty of PBIsin the system,
it is generally safe to overcommit the system resources (relying on the statistical unlikelihood that all
sockets will simultaneously tie up all the PBIsto which they are individually entitled). One should be
aware, however, that the higher-level protocols can get into deadlock conditionsif the system pbiFreeQ
becomes exhausted. For the same reason, a PBI passed to an external program viathe "bspOtherPupProc”

entry in the socket must be released as quickly as possible, sinceit is charged against the socket’ s alocation.

The BSP module includes a static "bspVersion" whose value is (protocol version * 1000) + package
version.

Cleared version of May 24, 1981
Pup Package January 25, 1981 102

6. BSP Block Transfer Procedures

The BSP stream mechanism just presented, while being a "fast stream” in the sense defined by the
operating system, is still relatively slow and is therefore not well suited to transferring large volumes of data
(such asfile transfers between disk and net). A separate module (PupBSPBIock) is provided for
accomplishing block transfers at least an order of magnitude faster than by iterated calls on Gets or Puts.

This module requires that the AltoByteBIt module (released as a separate package) be loaded as well.
Two procedures are defined in this module;

BSPReadBlock(str, wordP, byteP, count, timeout [...-1]) = count

Reads a maximum of "count" bytes from the BSP stream "str", storing them in memory starting a
byte position "byteP" relative to word address "wordP" (for example, byteP = 0 means the | eft byte
of the word referenced by "wordP"). The transfer terminates under any of the conditions that would

cause Gets(soc,timeout) to return -1. The procedure returns the actual number of bytes transferred.

BSPWriteBlock(str, wordP, byteP, count, timeout [...-1]) = count

Writes a maximum of "count" bytes to the BSP stream "str", obtaining them from memory starting a
byte position "byteP" relative to word address "wordP". The transfer terminates under any of the
conditions that would cause Puts(soc,byte,timeout) to return false. The procedure returns the actual

number of bytes transferred.

7. Name L ookup Module

This module (file PupNamelL ookup) contains procedures which will parse a string consisting of any lega
inter-network name/address expression and return a Port structure containing that address (suitable for
passing to OpenLevel 1Socket or plugging into the dPort field of a Pup). See the memo "Naming and

Addressing Conventions for Pup” (file <Pup>PupName.press) for information on legal expressions.

GetPartner(name, stream [none], port, sl [...noneJ, s2 [...noneJ) = true or false

Parses the BCPL string "name" and stores the resulting address value in the Port structure "port”,
returning true if successful and false otherwise. "stream”, if nonzero, is used for publishing an error
message if the conversion is unsuccessful. "s1" and "s2", if supplied, specify the high- and low-order
parts of the default socket number, which is substituted into the "port" if the socket number is
unspecified in the "name".

If the "name" consists entirely of address constants (in the form "net#host#socket" or some subset
thereof, where the components are octal numbers), then it is parsed locally. Otherwise, GetPartner
attempts to establish contact with a Name Lookup server, to which it passes the "name" for
evaluation. If thereply consists of several alternative addresses, the "best" one is chosen on the basis
of information in the local routing table. Regardless of whether or not the string is an address
constant, GetPartner will return false (with the message "Can't get there from here") if no routing
tﬁble entry Existsfor the resulting network and several callsto LocateNet discover no way of reaching
that network.

ParseAddressConst(name, port) = true or false
Attempts to parse the BCPL string "name" as an address constant of the form "net#host#socket”.
Stores theresult in "port" and returns true if successful; returns false if unsuccessful.

RequestNamel ookup(name, stream, resultV ec, lenResultV ec) = numPorts

Attempts to establish contact with a Name Lookup server to look up "name". If successful, stores the
answer as an array of Portsin the vector "resultVec", whose length in words is "lenResultVec", and
returns the number of ports so stored. If unsuccessful, outputs an error message to the supplied

"stream” (if nonzero) and returns zero.

Cleared version of May 24, 1981

Pup Package January 25, 1981 103
8. Example

The following example program makes use of most of the facilities provided in the Pup package. It is
basically arock-bottom minimal user Telnet (like Chat) with no redeeming features whatsoever.

The main procedure PupExample performs initialization, which consists of creating alarge Zone,
initializing the Pup package, creating alarge display window, and creating and starting a context running

the procedure TopLevel.

TopLevel first requests the user to type in aforeign port name, which it parses by calling GetPartner (note
that the socket number is defaulted to 1, the server Telnet socket). Then a socket is created and a
connection is opened. Two new contexts are now created, running the procedures KeysToNet and
NetToDsp. TopLevel then blocks until either the connection is no longer open or the second blank key on
theright of the keyboard is pressed, at which point it destroys the two contextsit created, closes the
connection, and loops back to the beginning.

The KeysToNet procedure blocks waiting for keyboard input, then outputs the typed-in character to the
BSP stream and calls BSPForceOutput to force immediate transmission. If the Putsfails, KeysToNet

simply blocks forever, in the expectation that TopL evel will detect that the connection is no longer open

and take appropriate action.

The NetToDsp procedure blocks waiting for input from the BSP stream. When anormal character is
received, it is output to the display. If Gets returns -1, then either aMark is pending or the connection has
ended; if the former, amessage is printed and BSPGetMark is called to clear the Mark pending status; if

the latter, NetToDsp blocks indefinitely.

/I PupExample.bepl

/[Bldr PupExample PupBSPStreams PupB SPProt PupB SPa PupB SPOpenClose »
/I PUpRTP PupRTPOpenClose PupNameL ookup

/I Puplb PupAlla PuplOpenClose PupRoute ”

/I PupAlEthb PupAlEtha”

/I Context Contextlnit Interrupt AltoQueue AltoTimer »

/I Puplinit PupDummyGate PupAlEthinit Interruptlinit

get "Pup.decl”
externa

[

InitPupLevel 1; OpenL evel 1Socket; Closel evel 1Socket; SetAllocation
OpenRTPSocket; CreateBSPStream; GetPartner

BSPForceOutput; BSPGetMark

InitializeContext; CallContextList; Block; Enqueue; Unqueue
InitializeZone; CreateDisplayStream; ShowDisplayStream

Gets; Puts; Closes; Endofs;, Ws

keys; dsp

static [ctxQ; myDsp; bspSoc; bspStr]

let PupExample() be // initialization

let myZone = vec 10000; InitializeZone(myZone, 10000)
letg=vec1; ctxQ =q; ctxQ!0=0
InitPupLevel1(myZone, ctxQ, 20)

let v = vec 10000

myDsp = CreateDisplayStream(40, v, 10000)

ShowDi splay Stream(myDsp)

Cleared version of May 24, 1981
Pup Package January 25, 1981

let v = vec 3000

Enqueue(ctxQ, InitializeContext(v, 3000, TopLevel))
CallContextList(ctxQ!0) repeat

]

and TopLevel() be // top-level process

Ws("*nConnect to: ")
let name = vec 127; GetString(name)
if name>>String.length eq 0 then finish
let frnPort = vec lenPort
unless GetPartner(name, dsp, frnPort, 0, 1) do loop
let v = vec lenBSPSoc; bspSoc = v
OpenL evel 1Socket(bspSoc, 0, frnPort)
unless OpenRTPSocket(bspSoc, ctxQ) do
[Ws("*nFailed to connect"); Closelevel 1Socket(bspSoc); loop]
Ws("*nOpen!")
bspStr = CreateB SPStream(bspSoc)
let keysToNetCtx, netToDspCtx = vec 1000, vec 1000
Enqueue(ctxQ, InitializeContext(keysToNetCtx, 1000, KeysToNet))
Enqueue(ctxQ, InitializeContext(netToDspCtx, 1000, NetToDsp))
Block() repeatuntil bspSoc>>BSPSoc.state ne stateOpen %
@#177035 eq #177775 //second blank key pressed
Ungueue(ctxQ, keysToNetCtx); Ungueue(ctxQ, netToDspCtx)
Closes(bspStr)
Ws("*nClosed!")
] repeat

and KeysToNet() be

test Puts(bspStr, GetKeys())
ifso BSPForceOutput(bspSoc)
ifnot Block() repeat

] repeat

and NetToDsp() be

let char = Gets(bspStr)
if char eq -1 then
test bspSoc>>B SPSoc.markPending
ifso
[
Ws("*nl saw aMark!")

BSPGetMark(bspSoc)
loop

ifnot Block() repeat
Puts(myDsp, char)
] repeat
and GetKeys() = valof

while Endofs(keys) do Block()
resultis Gets(keys)
]

Cleared version of May 24, 1981
Pup Package January 25, 1981 105

and GetString(string) be

fori =1to255do
[
let char = GetKeys(); Puts(dsp, char)
test char eq $*n

ifnot string>>String.char™i = char
ifso [string>>String.length = i-1; return]

9. Revision History

March 25, 1976

Various minor bugsin both code and documentation were fixed. One serious error in the documentation
was in the description of CreateBSPStream, where "lenBSPStr" should have been "lenBSPSoc". The level
1, RTP, and BSP modules each became slightly smaller. Various callsto CallSwat were changed to SysErr
with registered error codes.

Level O: External change: file PupAlEth.bcpl replaced by PupAlEthb.bepl and PupAlEtha.asm. Internal
change: fast (~20-instruction) Ethernet receiver turnaround implemented.

Level 1: External changes: statics pupZone and pupCtxQ added; procedures SetPupDPort, SetPupSPort,
SetPupSPort, and FlushQueue added; RT structure definition changed; default pupErrSt is now a "nil"
stream rather than "dsp".

RTP: External changes. defaultTimeout and rtpStackSize changed from manifests to statics (with default
values defaultDefault Timeout and defaultRTPStackSize); DefaultOtherPupProc added.

BSP: External change: static bspVersion added. Internal change: the transmission strategy was modified to
elicit an acknowledgment before allocation is completely exhausted, hence reducing lost throughput due to
round-trip delay.

April 16, 1976

The released package Pup.dm was renamed PupPackage.dm, and a debugging version of the package
released as PupDebug.dm. A number of bugs (particularly in level 1) were uncovered while bringing up
the software on the Nova.

Level 0: External change: lenPup and lenPBI changed from manifests to statics (defined in level 1) to
permit changing PBI size without recompiling the package. Internal change: 100-millisecond transmit
timeout and discard added (eliminating deadlocks caused by things like disconnecting the Alto from the
Ethernet).

Level 1: Externa changes. gateway code split out into separate files PupGateway and PupDummyGate,
one of which must be loaded (usually the latter); optional extra argument "pupDataBytes" added to
InitPupL evel1; default allocations in dPSIB changed to permit a socket to assign all but one of the PBIs in
the system; OpenL evel 1Socket defaults the foreign net in some circumstances. Interna change: if
"pupDebug” is on, PupLevel 1 checks for the pbiFreeQ being exhausted for more than 20 seconds and cals

Swat (this usually indicates a deadl ock).

BSP: External change: PupBSPb.bcpl replaced by PupBSPStreams.bcpl and PupBSPProt.bcpl
(necessitated by Nova BCPL’ s inability to compile PupBSPb in one gulp).

May 18, 1976

Cleared version of May 24, 1981
Pup Package January 25, 1981 106

Mostly bug fixes and performance improvements. Some structure definitions were changed, so
recompilation of user programs is advised.

Level O: Internal changes: more assembly code included to reduce packet loss rate; performance statistics
gathered if pupDebug on.

Level 1: External change: optional "type" and "length" arguments added to Compl etePup.
October 6, 1976

Significant internal changes were made at levels 0 and 1, and several new capabilities were added.
However, for the most part the changes are upward-compatible. Many structure declarations changed, so
recompilation of programsthat "get" any Pup .decl filesisrequired.

Level 0: External changes: SendEtherPup removed; Encapsul ateEtherPup and SendEtherPacket added;
ability to send and receive non-Pups implemented.

Level 1: External changes: PupRoute file added; PupGateway module deleted from public Pup package
release; routing table completely reorganized; new procedures HLookup, Hinsert, HDelete, HEnumerate,
HHash added; pupErrSt removed; mechanism added for broadcasting to all connected networks;
procedures Doubl el ncrement, DoubleDifference, Double subtract included (formerly in BSP module).
Internal change: GatewayL istener dynamically maintains the best path to each network and purges RTEs

of networks for which no routing information has been received recently.

BSP: Internal change: adaptive retransmission timeout implemented to reduce packet loss rate when
sending through slow networks or to slow destinations (e.g., Maxc).

March 21, 1977

gﬂdostslé/dbug fixes. Some structure definitions at level 0 were changed, so recompilation of user programs is
vised.

Level 0: SendStats operation added to the NDB object.

July 11, 1977
No external changes. The Ethernet driver was rewritten to eliminate several low-probability race
conditions and improve performance slightly. The driver now uses the "input under output” feature

unconditionally, so problems may be encountered on Alto-1s running old microcode.

March 20, 1978

External changes: Severa source files have been broken into smaller piecesto permit much of the code to
be included in overlays. The added modules are Pup1OpenClose, PupRTPOpenClose, and
PupB SPOpenClose (see section 1.2 for revised packaging information). Recompilation is required of any

programs that get Pup.decl or PupBSP.decl.

Internal changes: BSP performance through slow links and gateways has been improved. GetPartner’s
timeout has been increased. A few minor bugs have been fixed.

November 6, 1978

Level 0: External changes: The Ethernet driver can now control multiple interfaces connected to the same
Alto. InitAltoEther is called differently. Drivers are now available for the XEOS EIA interface and the
ASD Communication Processor, though they aren’t documented here.

Level 1: Internal change: The routing module data structures and algorithms have geen modified to
conform to some minor Pup protocol changes.

Cleared version of May 24, 1981

Pup Package January 25, 1981 107
BSP: External change: An inactivity timeout has been added to automatically abort connections that have
died; this may be disabled by setting the nolnactivityTimeout bit in the BSPSoc. Recompilation is

required of any programs that get Pup.decl or PupBSP.decl.
February 19, 1979

Level O: Internal change: The format of the statistics collected by drivers changed.

Level 1: Internal change: The interface between PupRoute and the forwarder changed. Thisisonly of
interest to gateways. External change: The definitions of pup types and well-known sockets have been
removed from Pupl.decl. We now feel that these belong in less global declaration files closer to the code
implementing the various protocols. Recompilation of user programs will probably cause undefined
symbols which you will have to add to your declaration files.

May 27, 1979

Level 1: External changes: InitPupLevel 1 takes an additional optional argument "numRTE"; LocateNet
procedure added; HHash removed; PupDummyGate module moved from resident to initialization;
[PupSoc static added. Internal changes: the routing table is now a cache of routing information rather than
ahash table of al accessible networks in the internet; RTEs may be "invalid" (hops greater than maxHops
and ndb equal to zero); new PupRoute.decl includes definitions internal to the routing module.

RTP: External change: IRTPSoc static added. Internal change: more code moved from resident (PUpRTP)
to swappable (PupRTPOpenClose) modules.

BSP: External change: IBSPSoc and offsetBSPStr statics added. Internal changes: minor bugs fixed; more
codde rlnoved from resident (PupBSPStreams and PupBSPProt) to swappable (PupBSPOpenClose)
modules.

NameL ookup: External changes: RequestNamel ookup and ParseAddressConst procedures now exported.
March 9, 1980

Levels0 & 1: Externa change: a"destroy" operation has been added to the NDB, and the procedure
DestroyPupLevell is included to shut down the Pup package. A few bugs have been fixed.

December 30, 1980

BSP: External change: The default timeouts for Puts, PutMark, Putlnterrupt and BSPWriteBlock were
changed from 'defaultTimeout’ to’-1’ (infinity). Thismakesthe’put’ operations symmetrical with the "get’
operations: so long as the other end of the connection is alive, the BSP will wait indefinitely to put or get a

byte. Recompilation of client programs is not necessary.
January 25, 1981

BSP: External change: optional "sendNow’ argument added to BSPForceOutput and BSPPutMark.
Recompilation of client programsis not necessary.

Cleared version of May 24, 1981

Queue Package May 17, 1976 108
Queue Package
This package implements a simple set of queue primitives. They are written in assembly language, so they

are small (the entire package is 69 instructions) and fast (see timings).

All the procedures are contained in AltoQueue.br, which is assembled from AltoQueue.asm. A Nova
version of this packageis available.

All queue primitives make use of two structures: the Queue header (hereafter abbreviated Q) and the Item.
structure Q: [

Head word // Pointer to first Item on Q
Tail word // Pointer to last Item on Q

structure Item: [
Link word ~ // Link to next Item

Remainder word whatever
An empty queue is denoted by Q.Head equal to zero and Q.Tail unspecified. The last Item on a queue has
zeroinitsLink field. An Item either passed to or returned from the following procedures may have an
arbitrary Link word. The Q and Item parametersin these procedures are of course pointersto the

respective objects.

Enqueue(Q,ltem)
Appends the Item to the Q, thereby making it be the tail item. Enqueue will call Swat if Itemis zero
(which is acommon source of bugs).

Dequeue(Q) = head Item or zero
Removes and returns an Item from the head of the Q, or zero if the Q is empty.

InsertBefore(Q,Successor,Item) = true or false
Insertsthe Item in a specific place on the Q, immediately before the specified Successor item.
Returns true normally, false if Successor was not found on the Q.

InsertAfter(Q,Predecessor,Item) = true
Insertsthe Item in a specific place on the Q, immediately after the specified Predecessor item.
Returns true always (undefined things will happen if Predecessor is not actually on the Q).

Unqueue(Q,Item) = true or false
Removes a specific Item from the Q. Returnstrue normally, falseif Item was not found on the Q.

Queuelength(Q) = integer
Returns the number of items on the Q.

All the queue routines are completely race-free, and both interrupt and non-interrupt code may safely
access the same Q simultaneously. However, calls to these procedures must be made with interrupts
enabled, since they execute "dir" and "eir" internally for race avoidance.

Timings for these procedures are now given. These counts are simply the number of instructions executed,
not including the instruction that called the procedure. The procedures InsertBefore, Unqueue, and
Queuel ength must search the queue from its head until they reach Successor, Item, or the end of the

gueue respectively; the factor "n" in the timings is the number of items looked at.

Enqueue 14 if Q previously empty
13 otherwise

Cleared version of May 24, 1981

Queue Package May 17, 1976
Dequeue 10if Q empty
11 otherwise
InsertBefore 10+4n
InsertAfter 15 if Predecessor was previoudly the tail
14 otherwise
Unqueue 12+4n if Item was previoudly the tail

11+4n otherwise
Queuel ength 6+4n

109

Cleared version of May 24, 1981

Random Number Generator November 9, 1977

Random Number Generator

This package consists of a single procedure, Random(), that returns uniformly-distributed 16-bit
numbers. The generator used is:

x[n] = (X[n-33] + x[n-13]) mod 216

which, according to Ed McCreight, has a period greater than 233. The numbers generated pass all
usual tests for randomness.

This package is coded in assembly language, so it is compact (about 55 words) and fast. It consists of
single file, Random.Br, whose source is Random.Asm. The generator’s state is stored as part of the
so the code should not be included in an overlay (doing so would reset the generator to itsinitial
every time the overlay was swapped in).

110

random

the

code,
state

Cleared version of May 24, 1981
ReadMB -- read a.MB file August 1, 1980 111

ReadMB -- read a.MB file

This package provides a convenient, although not particularly efficient, facility for reading an arbitrary
binary microcode file and parsing it. The package will read .MB files produced by Mu, Micro, or MicroD,
and .DIB files produced by Micro; it will not read Dump files produced by Midas, since they arenot in the

documented .MB format even though they usually have the extension .MB.

ReadM B(stream, maxMemx, memProc, symProc, fixProc, xfixProc)

Thisisthe only procedure defined by the package. Stream is aword-item stream from which the
microcode will be read. MaxMemx is the maximum valid memory number: areasonable valueis 20. The
remaining procedures are called asthefile is being read, as blocks of the various types are encountered.
ReadMB returns 0 when it reads the end block on the file, or a string describing the problem if the file is
not in proper format or some other problem occurs.

memProc(memx, width, name) is called when ReadMB encounters a memory definition. Memx is the
memory number, width is the memory width in bits, and name is the memory name as a Bepl string.
MemProc should return a procedure dataProc(addr, data, memx) which will be called whenever a data
word isread for the memory. Memx is passed to dataProc so that the same dataProc can be used for more
than one memory if desired.

symProc(memx, value, name) is called when ReadM B encounters a symbol definition. Memx is the
memory number, value the value of the symbol, and name the symbol name as aBcpl string. If symProc is
omitted, it defaultsto ano-op. Notethat even in .MB files produced by MicroD, the values of symbols in
IM are imaginary, not real, addresses.

fixProc(memx, addr, field, value) is called when ReadM B encounters afixup. Memx is the memory
number, addr the address within the memory, firstBit the first bit of the field within the word, lastBit the
last bit of the field, and value the value to be stored into the field. If fixProc is omitted, ReadM B will

return with an error string if afixup is encountered.

xfixProc(memx, addr, firstBit, lastBit, name) is called when ReadM B encounters a fixup that references an
external symbol. The parameters are the same as for fixProc, except that name is the symbol name, a Bepl
string. If xfixProc is omitted, ReadMB will return with an error string if an external fixup is encountered.

MBDataSegNo
Every dataitem in a.MB file contains afield which Micro uses for the line number in the source file, and
the other processors do not use. Sincethisfield is of no known use, ReadMB leavesit in the static

MBDataSegNo when calling a dataProc rather than passing it as a parameter.

Cleared version of May 24, 1981

READMU March 21, 1975 112
READMU
A library routine is now available for reading MU binary output. This routine may be useful for those
interested in debugging, analyzing, or otherwise manipulating Alto microcode. The packageis caled
READMU; itiswritten in BCPL and the only file required to useitis READMU.BR. It declares one
entry procedure, ReadM U, and one entry static, MuSegNo. The argumentsto ReadMU are (stream,
writeram, writecon, definename) of which only stream isrequired. Their significanceis asfollows:
stream must be a word-oriented input stream, the MU binary file. ReadMU only reads from this
stream.
writeram(addr, hipart, lopart) is called for every instruction in the file. If the writeram argument is
missing or O, instructions are discarded.
writecon(addr, value) is called for every constant in thefile. If writecon ismissing or O, constants are
discarded.
definename(addr, string, memoryid) is called for every symbol definition in the file. memoryidis SR
for R registers, $C for constants, or $I for instructions. If definenameis missing or 0O, symbol
definitions are ignored.
MU outputs instructions in an unspecified order, but with each instruction it outputs a " sequence number"
that reflects the order of appearance of theinstructionsin the sourcefile. ReadMU leaves this sequence
number in the static MuSegNo for use by the writeram procedure.
ReadMU returns O if everything went normally. If an error occurs, ReadM U returnsimmediately (leaving
the stream positioned just past the item in error) and the value returned is a string which identifies the type

of error. ReadMU detects the following errors:
Unexpected end of stream
Bad memory #
Data for undefined memory
Bad width
Bad memory name
Invalid block type

Cleared version of May 24, 1981

ReadUserCmltem March 19, 1976 113
ReadUserCmltem
A package is now available for reading items from user profile files such as User.Cm. This package

provides one procedure;
ReadUserCmltem(stream, string)

where stream must be a standard Alto stream which delivers characters from User.Cm (or any other file in
the same format), and string must be a pointer to a 128-word buffer area. ReadUserCmltem reads the next
item from the stream and stores it in the buffer areain the form of a standard Bcpl string.

ReadUserCmltem returns a value which identifies what type of item was read:
$E (end) End of stream. String is meaningless.
$N (name) Theitem was of the form [string].
$S(string) Theitem was of the form "string”.
$L (label) Theitem was of the form string:.
$P (parameter) Theitem was aline not conforming to any of the above (terminated by <cr>).

For items of types $L and $P, ReadUserCmltem removes initial blanks and tabsif any. Blank lines
are skipped. If anitem will not fit in aBcpl string (i.e. islonger than 255 characters), characters beyond the
255th are simply discarded.

Hereis an example file with the list of values and strings returned by ReadUserCmitem.

File:
[BRAVQ]
LEAD: Linelead = 6, Paragraph lead = 12
[DDS]
Selspec: "D*"
Vaues and strings returned by successive calls of ReadUserCmitem:
$N BRAVO
$L LEAD
$P Linelead = 6, Paragraph lead = 12
%N DDS
L Selspec
$s D*

Cleared version of May 24, 1981

RenameFile March 9, 1978 114
RenameFile
This package contains a single procedure, RenameFile, which changes the name of afilein an Alto file
system. The procedure handles multiple directories and versions, changes the file’' s serial number to
invalidate old hints, updates |eader page information, works with BFS or TFS, and generally triesto do the
job asthroughly asif it were part of the Alto OS directory module. RenameFile only worksin Operating
System versions 13 or later (in earlier versionsit returns fal se without doing anything).
RenameFile(oldName, newName, versionControl [verLatest], errRtn [SysErr], zone [sysZon€], nil, disk
[sysDisk]) = true or false
Deletes the directory entry 'oldName’ (after applying versionControl), changes the file serial
number, and creates a directory entry 'newName', returning true if successful. *OldName’ must
exist and 'newName' must not exist (unless versions are enabled in which case the next version of
"newName' is created). RenameFile will call errRtn(ecZoneTooSmall) if thereis not enough space

in zone to allocate a page-sized buffer.

Cleared version of May 24, 1981
Ring Buffer Routines February 20, 1976

Ring Buffer Routines

This package consists of a set of fairly fast assembly-language procedures for buffering data by means

circular buffers. The package comesin two versions: a "byte" version (RingBytes.br) that deals with
and packs them two per word, and a"word" version (RingWords.br) that deals with full words.
procedures in the two packages are called identically, so one may substitute the "word" version for
"byte" version to gain about afactor of two in speed at the cost of using buffer space only half
efficiently. The binary files mentioned above are contained in <Alto>RingBuffer.dm, and the source
arein <AltoSource>RingBuffer.dm. A Novaversion of this package is available.

A ring buffer is described by a Ring Buffer Descriptor (RBD), which is the address of a 4-word patch
memory provided by the user, initialized through a call to InitRingBuffer, and thereafter maintained
the routinesin the package. The "byte" and "word" versions of the routines make different uses of
RBD, but thisis of no interest to callers.

InitRingBuffer(RBD,Buffer,Length)
Initializes the RBD to describe a block of storage starting at "Buffer" and of length "Length"
words).

ResetRingBuffer(RBD)
Renders the ring buffer described by RBD empty.

RingBufferEmpty(RBD) = true or false
Returnstrue if the buffer is empty.

RingBufferFull(RBD) = true or false
Returnstrue if the buffer isfull.

ReadRingBuffer(RBD) = Item (byte or word)
Returnsthe next Item in the ring buffer if thereisone, or -1 if thereisn’t. Obvioudly, if the
version of the package is being used and -1 is a possible Item, then the caller should check
RingBufferEmpty before calling ReadRingBuffer.

WriteRingBuffer(RBD,ltem) = true or false
Attempts to put Item into the ring buffer and returns true if successful. The "byte" version of
procedure depends on the left half of Item being zero.

When these routines are used to pass streams of data between interrupt-level and non-interrupt-level
the following precautions should be observed to avoid races:

1. For agiven RBD, neither ReadRingBuffer nor WriteRingBuffer should be called both from
level and from non-interrupt level. However, ReadRingBuffer may be called from interrupt level
WriteRingBuffer from non-interrupt level or vice versa.

2. InitRingBuffer and ResetRingBuffer should not be called from interrupt level.

3. Cadllsto all routines should be made with interrupts on, since some of them execute "dir" and
internally. (Thisis not aproblem if the BCPL Interrupt Packageis being used.)

The following information is provided for debugging purposes only, and one should not write code
dependsoniit.

The "byte" version of the package lays out the RBD in the following way:
structure RBD: [

Begin word I/ Pointer to start of buffer
Length word // Buffer sizein bytes

115

of
bytes
The
the
as
files

"word"
with

this

code,

interrupt

and

"Eir"

that

Cleared version of May 24, 1981

Ring Buffer Routines February 20, 1976
Read word /I Current read index
Write word /I Current write index

The buffer istreated as an array of bytes, packed |eft to right and indexed starting at zero. The Read
Write indices refer to the last byte read or written.

The "word" version of the package uses the RBD in this way:

structure RBD: |

Begin word // Pointer to start of buffer
End word // Pointer past end of buffer
Read word I/ Current read pointer
Write word /I Current write pointer

The End word points to the first word beyond the end of the buffer; i.e. its value is Begin plus the length

the buffer. The Read and Write pointers point to the next word to be read or written.

Rough timings for the important procedures are now given. The counts are simply number of
executed, not including the instruction that called the procedure.

"byte" "word"
RingBufferEmpty 9 9
RingBufferFull 10 11
ReadRingBuffer 20.5 normally 12 normally

9if empty 9if empty
WriteRingBuffer 25 normally 13 normally

13if full 13if full

116

and

of

instructions

Cleared version of May 24, 1981
Read/write registers July 31, 1980 117

RWREG - procedures for reading and writing Alto microprocessor memories

This package provides procedures for reading and writing the Alto microprocessor memories (R/S,
constant, microinstruction). These procedures are of greatest use when debugging new microcode, but

may also be useful in conjunction with language emulators such as Lisp and Mesa.

For the purposes of this package, as for the Mu microassembler, the R registers are numbered 0
through 37b, and the S registers 41b through 77b (register 40B isthe M register).

ReadReg(regno[, Sbank]) -> value

Returns the contents of register regno. Altos with the 3K CRAM option have 8 banks of S registers,
the optional second argument to ReadReg is the bank number. Shank isirrelevant on Altos without the
3K CRAM option, or if regno specifies an R register rather than an Sregister. If omitted, Sbank defaults
to zero.

WriteReg(regno, valug[, Sbank])
Writes value into register regno, in bank Shank if applicable.
MakeXregDesc(regno, flag[, Sbank]) -> desc

Returns a "register transfer descriptor” which contains an encoding of the register number regno, the
bank number Shank, and the operation specified by flag (fal se means read, true means write).

DoXreg(desc, value) -> value

Performs the operation specified by the register transfer descriptor desc, returning the contents of the
register if aread, or writing value into the register if awrite.

The reason for MakeXregDesc and DoXreg isthat "compiling” the descriptor in advance alows the
actua transfer to be done more quickly.

ReadConReg(conno) -> value
Returns the contents of constant memory location conno.

ReadInsReg(loc, v2[, RAMbank])

V2 must be a pointer to a 2-word area. Reads the contents of microinstruction RAM location loc into
v2!0 and v2!1. Notethat ReadlnsReg is not capable of reading the microinstruction ROM, only the RAM.
On Altos with the 3K CRAM option, RAMbank specifies which RAM bank to use, 0 through 2. If

omitted, RAMbank defaults to zero.
WritelnsReg(loc, v2[, RAMbank])
Writes v2!0 and v2! 1 into microinstruction RAM location loc, in RAM bank RAMbank if applicable.

RegWorkArea

This static contains the RAM(0) address of a 4-instruction scratch area used by ReadReg, WriteReg,
DoXreg, and ReadConReg. Itisinitialized to 1000b, which is the standard scratch areain RAMO; the user
of this package may reset it at any time. On Altos with 3K CRAMS, this address must lie in the range 0-

177b or 1000b-1177b; on Altos with 2K ROMs, this address must lie in the range 0-377b or 1000b-1377b.

Cleared version of May 24, 1981
ScanFile April 25, 1979 118

ScanFile - a package for rapid sequentia file scanning

This package enables a program to scan Alto files at full disk speed, including overlapping disk transfers
with computation. The package iswritten entirely in Bepl and uses only standard OS facilities.

To initialize the package, call
ScanFile(fp, bufferAddress, bufferSize, fa[0], disk [sysDisk], altoFile [false])

wherefpisafile pointer as described in the Alto OS manual and bufferAddress is the beginning of a block
of bufferSize words. If faisnot zero, it must be afile address as described in the Alto OS manual, and
scanning will begin with the file page specified by fa. The disk addressin fa must be correct, not just a
hint. If disk isgiven, it must point to a disk descriptor as described on p. 52 of the Alto OS manual;
otherwise, ScanFile uses sysDisk, the standard system disk.

If fais zero and altoFile istrue, ScanFile will read the length hint in the leader page of the file and not
gueue any reads beyond it until the presumed last page has been read. Thisinvolvesthe following
tradeoff: if altoFile=false, the entire file will be read at maximum speed, but because of a peculiarity of
the Alto file system and disk controller the disk will seek to track O at the end of the file, thereby wasting a
substantial amount of time; if altoFile=true and the length hint is correct, one disk revolution will be lost,
but the disk will not seek to track O; if altoFile=true and the length hint is wrong, two revolutions will be
lost and the disk wil seek to track 0 anyway. Thelength hint isamost always right, and one disk revolution
is much less time than a seek to track O and back, so setting altoFile to true is a good idea unless you are

doing something very unusual.

ScanFile returns an instance pointer (ip) which points to a structure ScanFile sets up in the buffer area.
The minimum size for the buffer areais availablein a static called
ScanFileFixedSize
and each additional page (400b-word) buffer requires
ScanFileBufferSize
words.

To get the next page of the file, call
ScanBuffer(ip, fa)

where ip isthe instance pointer returned by ScanFile and fais a pointer to afile address structure as
described in the Alto OS manual. If the end of the file has not been reached yet, ScanBuffer returns the
address of a page buffer containing the next page of data, and fills in the fa with the page number, disk
address, and number of characters of datain the page. If the end of the file has been reached, ScanBuffer
returns 0. Note that the contents of a page buffer are only guaranteed valid until the next call on
ScanBuffer. Note also that the first page delivered by ScanBuffer is the first page of data, not the leader
page.
When you are finished scanning afile, call

ScanFinish(ip)
whereip isthe instance pointer. If you don't do this, the next use of the Bfs (e.g. by the OS) may throw
you into Swat.
It is possible, although not particularly recommended because of arm movement, to scan more than one
file simultaneously with ScanFile. Of course, each file being scanned requires a separate call on ScanFile

and its own buffer area.

ScanFile currently only handles the standard Alto Diablo disks (model 31 or 44), not Tridents. If the need
arises, Scankile can be extended to handle Tridentsfairly easily.

Cleared version of May 24, 1981
SCcV 23 May 1975 119

SCV: Scan Converter Package

SCV is apackage for scan-converting objects from a description of the boundaries of the object. The
package computes which bits of each scan-line fall under the object described; if these bits are displayed in
black, the object will appear, colored black.

Theinput to SCV is an ordered sequence of edge descriptions; an edge may be either a straight line or a
spline curve. SCV scales the coordinates of the edge and computes the intersections of the edges with the
coordinate grid. Finaly, the intersections are sorted, first by scan-line number, and then by "run
direction" within the scan-line.

Thus the coordinate system is based on "scan-direction” and "run-direction” rather than on x and y. The
coordinates of a point are (s,r) where sisthe scan-line number, and r is measured along the scan-line. For
example, on the Alto, s might run from 0 to 807, a vertical measure; r might run from 0 to 605, a horizontal
measure.

Before passing to detailed explanations, consider the following example:

SCV BeginObject(false) (5,10)

SCVMoveTo(0,0) A

SCVDrawTo(10,0) /\

SCVDrawTo(5,10) [\

SCVEndObject(v) [\

...(details) [-mmme \

SCV ReadRuns(v,buf,100) (0,00 (10,0
Thisreturnsalist of intersections: (1,0) (1,2) (2,0) (2,4) (3,0) (3,6) (4,0) (4,8) (5,0) (5,10) (6,0) (6,8) (7,0)
(7,6) (8,0) (8,4) (9,0) (9,2) (10,0) (10,0). If these intersections are paired into "runs,” we can see which bits to
turn on (e.g. on scan-line 3, we turn on bits O (inclusive) through 6 (exclusive); more on this below). Thus

we get (remember, scan-lines are vertical in the above example):
*

*

* k%

* k%
*kkk*k
*kkk*k
kkkkkk*k
*kkkkkk*k
*kkkkhhkhkkx
*kkkkkkkkx

Initialization

SCVInit(Getb,Putb,Error)

This routine must be called before any objects are scan-converted. Getb is the address of a routine
for obtaining blocks of storage; Putb is aroutine to return these blocks to the pool; Error is an
error routine. Templates for these subroutines are:

let

Getb(BlockSize) = valof [
//Get afree storage block of length BlockSize.
//Suppose Addr is the address of the first usable word.
resultis Addr
] and
Putb(Addr) be |
1/Reéurns block acquired previously by Getb.
an

Cleared version of May 24, 1981
SCcV 23 May 1975 120

Error(String) be [
//String isa BCPL string that describes the error.
]
SCVMatrix(a,b,c,d)

This routine sets the scaling matrix. In al functions that have s and r values as parameters, the
following scaling takes place:

S=a*s+c*r
R =b*s+ d*r

and the values of Sand R are actually used. In all explanations below, if upper-case Sand R are
used, they represent scaled versions of sand r. The argumentsto SCVMatrix are either:

a. 0. The corresponding coefficient is zero.
b. A pointer to a packed floating-point number.
¢. The number of afloating-point accumulator. (See "Restrictions,”" below.)
Thus the identity transformation can be established with: FLDI(2,1); SCVMatrix(2,0,0,2).

SCVTransformF(s,r,v)
This routine scales s and r by the scaling matrix, and returns Floor(Round(S)) in v!0 and
Floor(Round(R)) in v!1. Thefull value of Sisleft in floating-point accumulator 8; that of R in
accumulator 9.

Generating Object Descriptions

The operations of generating object descriptions and of actually computing the intersections are separated
in order to cater to certain applications. The object generation processis: (1) initialize by caling
SCVBeginObject, (2) pass boundary descriptions to SCVMoveTo, SCVDrawTo or SCVDrawCurve, and

(3) finish by calling SCVEndObject, which returns an object descriptor (structure SCV).
SCV BeginObject(Care)

Called to begin describing anew object. Careistrueif "careful" scan conversion isrequired (see
SCVENdObject).

SCVMoveTo(sr) -or- SCVMoveToF(sr)
Starts a new boundary, and sets the "current” point to (S,R). The argumentsto SCVMoveTo are
signed 16-bit integers, SCVMoveToF isidentical in function, but requires floating-point numbers
(or accumulator numbers) as arguments.

SCVDrawTo(sr) -or- SCVDrawToF(s,r)

Specifies that the next leg of the boundary is an edge from the "current" point to (S,R). The
current point is set to (S,R). The argumentsto SCVDrawTo are signed 16-bit integers,
SCVDrawToF isidentical in function, but requires floating-point numbers (or accumul ator

numbers) as arguments.

SCVDrawCurve(sa,ra,sh,rb,sc,rc)

SCV

Cleared version of May 24, 1981
23 May 1975 121

Specifies that the next leg of the boundary is a parametric cubic spline traced out by values of t
from 0 to 1 in the equations ("current" point is (So,R0)):

S(t) =So + Sat+ Sbt<+ Sct

R(f) =Ro+ Rat+Rbt2 + Rct3

The "current" point is set to (S(1),R(1)). Arguments are floating-point numbers (or accumulator
numbers).

SCVEndObject(v)

Finishes the object description, and returns useful datainv:

v>>SCV.Smin, v>>SCV.Smax. Minimum and maximum values of S (inclusive) where the object
lies. Signed 16-bit integers.

v>>SCV.Rmin, v>>SCV.Rmax. Minimum and maximum values of R (inclusive). (If splines are
used, these two numbers are accurate only if the Care argument to SCVBeginObject is "true".)
Signed 16-bit integers.

Generating Intersections

Armed with an object description ("v" argument to SCV EndObject), intersections can be cal cul ated with
callsto SCVReadRuns.

SCVReadRuns(v,Buffer,Bufsize)

Calculates some intersections, and records them in abuffer (Buffer is the address of the first usable
word of the buffer, Bufsize is the number of words in the buffer). Two valuesin the vector %
govern the range of Svaluesto consider: values from v>>SCV.Sbegin and v>>SCV.Send
(inclusive) are considered. NB: This S range must proceed unhesitatingly from v>>SCV.Smin to

v>>SCV.Smax, as returned by SCV EndObject.
The function returns, in v:

v>>SCV.IntPtr. Pointer to the first intersection.

v>>SCV.IntCnt. Number of intersections calculated. Thisis guaranteed to be even, so that an
integral number of intersection pairs ("runs') are in the buffer.

v>>SCV.Send. Largest Svaue considered. If the buffer istoo small to contain all intersections in
the S range requested, the range is reduced until the intersections will fit. On return,

v>>SCV.Shegin and v>>SCV.Send represent the range actually calculated.

The intersections returned by SCVReadRuns are sorted in the buffer by S and then by R. Each
intersection requires two words: thefirst is the S value, the second the R value.

The following code demonstrates a probable use of SCVReadRuns:

SCV BeginObject(false)
...specify boundaries...
let v=vec size SCV/16
SCVEndObject(v)

let b=vec 200
v>>SCV.Shegin=v>>SCV.Smin //First range

[
v>>SCV.Send=v>>SCV.Smax //Assume entire range fits.

Cleared version of May 24, 1981

SCV 23 May 1975 122
SCVReadRuns(v,b,200) //Calculate intersections.
let n=v>>SCV.IntCnt
if neqOthenbreak //All done.
let p=v>>SCV.IntPtr
fori=1tonby 2do //Loop for each run.
let S=p!0 /ISvalue
for R=p!1 to p!3-1 do TurnOnBIt(S,R)
p=p+4 /INext intersection pair.
v>>SCV.Sbegin=v>>SCV.Send+1 //Prepare next S range.
] repest
Theloop on R values of the intersection pair stops just short of the second intersection. That the R interval
should be open can be demonstrated with the following example: suppose that two edges intersect a
particular scan-line at R=0.5 and R=2.5. Clearly the "width" of the object on this scan-lineis 25
0.5=2.0. SCV truncatesthe R values before sorting them, and so reports intersections at R=0 and R=2,
again a"width" of 2.
Operation
SCV code is contained in the files SCVMAIN.C and SCVSORT.C. The definitions for the SCV structure
arein SCV.DFS. The SCV package requires the floating-point package FLOAT. The program
SCVTEST.C is an example of the use of SCV.
Strategies
The orderly way in which SCV ReadRuns proceeds from small values of S to large values can sometimes be
linked to the order in which information is used, e.g. added to the screen. If several objects areto be added
in one pass over the screen, SCV can handle that as follows:
a. Generate object descriptions for all objects, saving the "v" vectors for each one.
b. Call SCVReadRuns for each object, dumping intersections into separate buffers. Use the
intersection information to update the screen. (Or, for the energetic, merge the runs from the
several objects!)
C. Repeat step b until all objects are finished.
Note that objects may have several closed boundaries (acall to SCVMoveTo signals the beginning of a new
boundary). The most common use of this feature isto specify the boundaries of "holes' in the object.
Restrictions and Caveats
1. After scaling, S and R must both lie between -16000 and +16000.
2. The SCV package uses many floating-point accumulators. However, it guarantees never to clobber AC 0
to 7 inclusive. Similarly, the caller must guarantee:
a. Not to clobber AC’'s 28-31 inclusive unless he iswilling to re-establish the scaling matrix with a

call to SCVMatrix.

Cleared version of May 24, 1981

SCvV 23 May 1975 123
b. Not to clobber AC's 22-27 inclusive during object generation (i.e. between acall to
SCVBeginObject and SCVEndObject).

3. If you do not intend to use splines at al, the code in SCVMAIN.C can be shortened considerably.

Relrlntc;ve :Ield c)ode between comments //BEGIN $$$ and //END $$$. (Eventualy, conditional compilation

will be used.

4. Free storage use. For each edge, an 8 word block isacquired (24 if it is a spline); the blocks are released
by SCVReadRuns when it is no longer needed.

Cleared version of May 24, 1981
SDIALOG March 4, 1977

SDialog -- Simple Dialoging Package

124

SDialog is a package of BCPL subroutines that will aid a program in carrying on ateletype style interaction

withitsusers. Hereisalist of its features:

1?] SDialog handles all the display and keyboard 1/0, including such things as backspacing over
character.

2) SDialog handles converting things between their representations as strings and their internal form.

3) Thereis help provided when the user typesin an illegal or malformed response.
4) There are provisions for defaulting the user responses.

5) SDialog issmall (it’s probably fast too, but that doesn’t matter).

Before proceeding any further you should read the memo entitled "Users' Guide for ' Simple Diaoging'"

in <Pardey>SDIg.ears. Therest of this discussion will assume afamiliarity with that memo.
SDialog will handle dialog about several different kinds of things. Each of these thingsis assigned
"radix". Notethat asisusua in BCPL, all "values' are always 16 hits, but some of those values may

be pointers to (addresses of) multiword vectors. Hereisalist of the legal radices (the declarations may
found in the file Util Str.d):

integers (>=2) -- Only radices of 2, 8, 10, and 16 will really work right. When integers of radix 2,
and 16 are shown to the user, they are always considered unsigned.

radixString (0) -- anormal BCPL string

radixFileName (-3) -- a BCPL string, but user responses are checked for legality
radixCharCode (-1) -- the ASCII code of acharacter, i.e., 0 <= value <= #377
radixSwitch (-2) -- the valueis either TRUE or FALSE

If you wish to do dialoging about something other than the above, then you should tell SDialog that
are dialoging about a radixString and then convert the users response to your internal form yourself.

Here are some notational conventions for what follows: Arguments enclosed in square brackets
optional. If an optional argument is followed by a slash, then whatever follows the slash isthe
value for that argument. If thereis no dlash, then there is no default value. Whatever follows"->" is
indication of the return value of the routine (if any).

There is one basic procedure:

Dlg (prompt, radix, [defaultValue, [pointer, [defaultExtension]]])
->value

where prompt isastring, radix is one of the list above, defaultValue and value are "values' of that
pointer isjust that, and defaultExtension isastring. pointer iswhere to put the (converted) response if
valueto thisradix isrealy apointer, e.q., if radix is radixString.

Since this routine would be somewhat awkward to use, there are several other routines that call it.
general there are two routines per radix, one that takes a default value and another that doesn’t.

DIgNum (prompt, [radix/10]) -> integer
DDIgNum (prompt, defaultNumber, [radix/10]) -> integer

a
realy
be

81

you

are
default

radix,

Cleared version of May 24, 1981
SDIALOG March 4, 1977 125

DIgStr (prompt, resultString)
DDIgStr (prompt, defaultString, resultString)

DlgFileName (prompt, resultFileName, [defaultExtension])
-> resultFileName>>SL

DDIgFileName (prompt, defaultFileName, resultFileName,
[defaultExtension])

DIgSw (prompt) -> Switch
DDIgSw (prompt, defaultSwitch) -> Switch

DIgChar (prompt) -> CharCode
DDIgChar (prompt, defaultCharCode) -> CharCode

DIgCA (prompt)

DIgCA iswhat you should call when you want something confirmed, but don’'t want any "value". DIgCA

merely waits for the user to type one character. If it'sapositive responseit returns. If it's negative it cals
DIgErT (see below).

No problems are occasioned by having defaultString and resultString be the same (this holds for file names
too). Inthe dialoging about file namesit’s possible to specify a default extension for that file name with or
without adefault file name. The default extension will be added to the user response if and only if that

response did not include a period. string>>SL means the length of the string.

Now will talk about dialoging errors. Whenever anybody discovers an error in a user response, he should

DIgErr ([msgl, [msg2, [errLoc, [errStack] 11 1)

where msgl and msg2 are strings (or 0), errLoc is the label where control isto go, and errStack isthe value
that should be in the stack pointer (address of aframe) when control getsto errLoc. DIgErr types the
messages to the user followed by a carriage return and does a GotoL abel (errStk, errLoc, nil). Note that

errLoc and errStack had better go together.
Actually things are a bit better than this. Thereisaroutine

Dlglnit ([errLoc, [inStream, [outStream]])

that may be used to set errLoc and errStack. errLoc is generally set explicitly using DIglnit and errStack is
set to the frame of the caller of DIgInit. Theideaisthat just before you' re about to get a parameter from
the user that he/she might screw up on, call DIglnit with alabel that isjust before the call on some
dialoging routine. Thenif an error is discovered, call DIgErr with the appropriate error message. The
error message will appear and the user will get another chance to type in the parameter. There are
examples of this sort of usage of DIglnit and DIgErr in the source code files for the subsystems IcCSEM and

IcGerb. Hereisan example:

let inFileName = vec |FileName
DlglInit (NolnFile)
NolnFile:
DlgFileName ("Input”, inFileName, "icarus")
let inS = OpenFile (inFileName, ksTypeReadOnly)
if inSeq 0 do DIgErr (inFileName, " doesn’t exist")
if Gets (inS) ne icarusPasswWord do
DIgErr (inFileName, " isn't an Icarusfile -- wrong password")

The reason why Dlglnit ought to be used (rather than DIgErr alone) isthat SDialog itself sometimes cals
DlgErr and errLoc and errStack should be correct before that happens. SDialog checks user responses for
such things as. no letters or illegal digitsin integers, only legal charactersin file names. If SDialog sees

Cleared version of May 24, 1981

SDIALOG March 4, 1977 126
such an inappropriate response from the user, it calls DIgErr, so things ought to be set up so that the user
getsto try again on his response, and that’'s what DIglnit does for you.

There are three "global" variables in SDialog that a user program may change: digDefaulted, diginS, and
digOutS. The latter two are streams. They default to keys and dsp respectively. Feel freeto set up your

own display or file streams. Note that these globals get set every time DIglnit is called.

The global variable digDefaulted is a boolean. It says whether or not the user has asked to take the
defaults for the rest of the dialog. Some strange programs may want to intervenein this.

There are two more routines that are available (but probably no one will want to use them):

DlgGetParameter (string, [defaultSwitch])
DlgBackaChar (char)

DlgGetParameter does all the work of Dlg after the prompt has been displayed and up to the conversion of
the response, i.e., it displays the default response (if any) and receives the user’ s response (with echoing).
DlgBackaChar will backspace over and erase a character on the display.

SDialog uses several routines from the package Util Str, so normally SDialog and Util Str should be loaded
together. Y ou may want to combine and tailor the source code of these two packages for your own uses.

Help is available from the maintainer(s) of the packages.

Cleared version of May 24, 1981
Cubic spline packages December 19, 1977 127

Cubic spline packages:
SPLINEL, SPLINE2, SPLINE3, and DRAWSPLINE

This document describes several spline packages: a set of packages for computing a cubic spline, and a
package for displaying such a cubic spline on the Alto display. The package for computing splines is
available in three versions: SPLINEL.Bcpl, SPLINE2.Bcpl, and SPLINE3.Bcpl. Each one contains a
procedure for fitting cubic splines to sets of data points, called knots, following algorithms documented in

the report " Spline Curve Techniques' (by Baudelaire, Flegal, & Sproull), May 1977.
1- Spline computation packages:

The three packages SPLINE1, SPLINE2, and SPLINE3 contain a procedure of the SAME name, with an
IDENTICAL calling sequence:

success ParametricSpling(N, X, y, p1x, p2x, p3x, ply, p2y, p3y, type[0])

N n=|N]|isthe number of knots. The sign of N tells whether the knot coordinates are given in
integer format (N is negative) or floating point format (N is positive).

X, y are two tables containing the coordinates of the knots. They are of length n (integer) or 2*n
(floating point).
plx, p2x, p3X, ply, p2y, p3y are six tables of length 2* n in which the coefficients defining the
parametric splines are returned (floating point). These coefficients are, respectively, the firgt,
second and third derivatives at each knot of the cubic splines x(t) and y(t), t varying between 0 and
1. Notice that, although only the first n-1 values of these derivatives are necessary, the arrays
should be of length 2*n.
typeis either O (for natural end conditions, i.e. open ended curve) or 1 (for periodicity, i.e. cyclic curve).
In the later case, it is mandatory that the first and last knots be identical. The type defaultsto 0
(natural end conditions).
The implementation of the parametric spline algorithm is different in each packages: SPLINE1
implements a natural spline with unit step parametrization (algorithm 1.2.7), SPLINE2 implements a
natural spline with chord length parametrization (algorithm 1.2.5), and SPLINE3 implements local cubic
B-splines.
In addition, SPLINEZ2 contains the procedure CubicSpline which computes a general non-parametric cubic

spline (algorithm 1.2.5). The calling sequenceis:
success_CubicSpline(N, x, y, ply, p2y, p3y, type[0])
with the same conventions as above.
All the procedures need free storage, which they get from a zone you must provide by setting the static
PSzone. The amount of storage needed is as follows: In the basic case (n positive, type=0): enough for 8

floating point registers (16), plus 4*n. If nis negative, the coordinates have to be converted to floating point
format: so add 4*n. If typeis 1, add 6*n.

The static PSerror points to an error procedure that smply trapsto SWAT. The error routineis called by
the statement: "... resultis PSerror(errorNumber);" Y ou may substitute your own error handling routine.
errorNumber=1 means "not enough storage." Other errors are probably fatal.

The spline packages use the microcoded floating-point package MICROFLOAT for all arithmetic
calculations. The format of floating point numbersis consistent with the conventions of that package.
L oading of the microcodein RAM and initiaization of floating-point routines (by calling procedure

FPSetup) must be done before using spline routines.

Cleared version of May 24, 1981

Cubic spline packages December 19, 1977 128
2- Spline display package:
DRAWSPLINE contains a set of procedures for displaying on an Alto display bitmap a cubic spline
defined by its knot coordinates. It uses the procedure ParametricSpline defined above: the
DRAWSPLINE package must be loaded with one of the SPLINE packages.
The package must first be initialized: thisis done by invoking the procedure:

InitSpline(zone)
which loads and initializes the floating-point microcode, and provides a zone to be used by all spline
displaying and computation procedures: the static PSzone will point to this zone. Y ou may prefer to do
initialization yourself.
Splines are displayed on an "area" which is an arbitrary rectangular window on the plane, mapped onto
some arbitrary position inside abitmap. An areais defined by acall to the procedure:

area_DefineArea(bitmap, wordWidth, scanCount, Xw [0], Yw [0], Xleft [0], Y bottom [0], width
[16*wordWidth], height [scanCount])

bitmap is a pointer to an Alto display bitmap. Y ou are responsible for creating and linking the
appropriate DCB for this bitmap.

wordWidth and scanCount define the x and y dimension of the bitmap.

Xw and Yw specify the bit position and the scanline position in the bitmap of the lower-left corner of
the window, relatively to the lower-left corner of the bitmap. For good results, these numbers
should be positive, and respectively less than 16*wordWidth and scanCount. The default window
position is the corner of the bitmap (Xw=0, Yw=0).

Xleft, Y bottom, width, and height specify arectangular window on the plane in which the spline is
defined. This defines the portion of the plane that is visible on the display bitmap: the spline will
be clipped to the limits of thiswindow. The lower-left corner of the window (plane coordinate
Xleft, Ybottom) is displayed as point (Xw, Yw) of the bitmap. The plane coordinate system
follows standard conventions: Y goes up, and X goes to the right; one unit represents one display
point. Thewindow defaultsto fill the whole bitmap (Xleft=0, Y bottom=0,
width=16*wordWidth, height=scanCount). If the window istoo large when positioned at point
(Xw, Yw), it is appropriately reduced.

The procedure returns an "ared’, a structure to be used by the spline drawing routine. Several area may
exist smultaneously, on several bitmaps or on the same bitmap. Areas which are not used any more are
released by the call:

Free(zone, area)

To compute and draw a spline defined by its knots, call:

success DrawSpline(area, N, X, y, brush [0], drawMode [1], type [Q])

areais astructure that has been obtained by a call to DefineArea.

N n=|N]|isthe number of knots. The sign of N tells whether the knot coordinates are given in
integer format (N is negative) or floating point format (N is positive).

X, y are two tables containing the coordinates of the knots. They are of length n (integer) or 2*n
(floating point).

brush isapointer to asmall bitmap defining abrush. The brush bitmap is 1 word wide and H words
high. The first word contains H, and it is followed by H words of bitmap. Standard brushes may

Cleared version of May 24, 1981

Cubic spline packages December 19, 1977 129
be obtained by calling the routine GetBrush (see below). If the brush argument is ommitted or
equal to zero, asingle dot brush is used.

drawMode iseither 1 (the curveis"painted” onto the bitmap using the brush), 2 (the curve is
"xored"), or 3 (the curveis erased). The procedure uses the microcode function BitBlt to paint,
xor, or erase the brush along the trajectory defined by the spline.

typeis either O (for natural end conditions, i.e. open ended curve) or 1 (for periodicity, i.e. cyclic curve).
In the later case, it is mandatory that the first and last knots be identical. The type defaultsto 0

(natural end conditions).
Standard brushes can be obtained by a call to
brush_GetBrush(brushShape, brushSize)

brushShape has one of the following values. O (round brush); 1 (square brush); 2 (flat horizontal
brush); 3 (flat vertical brush); 4 (flat diagonal brush).

brushSize is a number between 1 and 16 defining the size of the brush: it is rounded to one of the
valuesl, 2, 4, 8 or 16.

The package DrawSpline must be loaded with the following files:

SPLINE1L, SPLINE2, or SPLINES3

MICROFLOAT (small resident code for floating point)

MICROFLOATMC (floating point microcode; may be reclaimed after initialization)
READPRAM (for loading the RAM; may be reclaimed after initialization)

Cleared version of May 24, 1981

Strings Package July 8, 1977 130
Strings Package

This package provides a small set of useful string-manipulation primitives. There are two independent

modules; a"streams’ module implementing standard stream operations reading and writing strings, and a

"utility" module containing a small set of procedures for concatenating, extracting, and comparing strings.

The utility operations parallel some of those provided in Bruce Parsley’s Util Str package. The principal
departures from that package are:

1. Proceduresthat create new strings get storage by allocating it from sysZone rather than
requiring that the caller supply it.

2. Operationson large strings are relatively efficient because the ByteBIt package is used.

3. Noformat conversion operations are provided, since the availability of string streams makes it
possible to use existing software that formats output to streams (e.g., the proceduresin the
operating system or the Template package).

The .br files are packaged as Strings.dm, and the sources are contained in StringsSource.dm, which also
includes various command files.

1. String Streams
The "streams' module (file StringStreams.br) provides one external procedure for creating a string stream;
all other access to the stream is via the standard stream operations. The package makes use of the

operating system’s "fast streams’ mechanism, so it is relatively efficient when dealing with long strings.

CreateStringStream(string, maxLength [O], firstChar [1], zone [sysZone€]) = ss

Creates and returns a string stream reading or writing the specified BCPL string. 1f maxLength is
zero (the default), assumes that an existing string has been supplied (presumably for reading); if
nonzero, assumes only that a block of storage capable of holding a string of maxLength characters has
been provided. firstChar isthe index of the first character to be read or written (remember that the
first character of aBCPL string is numbered 1, not 0). By appropriate setting of maxLength and
firstChar one may read partial substrings or append to existing strings. The stream structure is

allocated from the specified zone.

Gets(ss), Puts(ss, €)
Reads or writes the next character in the string. If the end of the string is exceeded (either its existing
length or maxLength), Errors(ss, ecEof) is called (ecEof = 1302).

Endofs(ss) = true or false
Returnstrue if the next Gets or Puts would call Errors.

Closes(ss)
If any Puts operations have been executed, updates the string’ s length to be the current position (i.e,
the index of the last character read or written). Then destroys the stream by returning it to the zone
from which it was allocated.

An additional module StringOEP.br is provided. It declares the Overlay Entry Points (OEPs) for the

StringStreams module, which need be done only if the module is |loaded as part of an overlay. Consult the

author for further information.

Cleared version of May 24, 1981

Strings Package July 8, 1977 131
2. String Utilities

The "utilities" module (file StringUtil.br) requires that the ByteBIt package (file AltoByteBlt.br) also be
loaded. All strings created by these procedures are allocated from a zone (default sysZone), so the caler

should return them by calling Free when done with them.

ExtractSubstring(string, first [1], last [string>>String.length], zone [sysZone]) = newString
Extracts the "first" through "last" characters of the supplied string and returns the result asa new
string. The defaults are such that the entire source string is copied, thereby providing a convenient
way to create copies of strings.

ConcatenateStrings(sl, s2, freel [false], free2 [false], zone [sysZone]) = newString
Returns the result of concatenating strings s1 and s2. Then frees sl if freel istrue and s2 if free2 is
true. Thisfacilitates writing embedded string expressions whose result is a single string, with all
intermediate strings discarded. (All strings must belong to the same zone.)

CopyString(dest, source)
Simply copies the source string into the block pointed to by dest, which had better be big enough.
This procedure does not allocate new storage.

StringCompare(sl, s2, firstl [1], lastl [s1>>String.length], first2 [1], last2 [s2>>String.length]) = result
Comparesthe first1 through last1 characters of string s1 with the first2 through last2 characters of s2.
Returns a code describing the outcome:

-2 slisaninitial substring of s2.

-1 slis"lessthan" s2 but not aninitial substring.
0 slis"equa to" s2.

1 slis"greater than" s2.

Lower-case |etters collate with their upper-case equivalents. The arguments beyond s2 are optional
and default to the entire respective strings.

3. Revision History

May 24, 1977

First release.

July 8, 1977

Optional zone argument added to ExtractSubstring and ConcatenateStrings.

Cleared version of May 24, 1981

Template Package October 1, 1976 132
Template Package
The Template Package contains a single procedure, PutTemplate, which formats output to a stream
according to atemplate provided asa string. This software serves essentially the same purpose as the
existing Format Package, but isimplemented much more efficiently (it contains one-third as much code,
requires one-fifth as much stack space, and runs over ten times as fast as Format). The major difference
from Format is that PutTemplate outputs to a stream rather than to a string (though of course one could
obtain the same effect by outputting to a string stream). The template syntax is also different, and
PutTemplate omits a few miscellaneous capabilities such as hexadecimal output. A Nova version of this
package is available.
PutTemplate(stream, template, parl, par2, ..., parN)
Writes the "template” (a BCPL string) to "stream”. Within the template may appear zero or more
escape sequences of the form:
$ modifiers command
For each of these, the next parameter (starting at "parl") is substituted, with conversion as specified
by the escape sequence.
An escape sequence consists of adollar sign, followed by an optional modifier sequence, followed by
aone- or two-letter command (upper and lower case are equivalent). There should not be any spaces
or other extraneous characters within the escape sequence. A dollar sign may be included literally in
the template by writing "$$".
The defined escape sequences are as follows. "#' stands for the optional modifier sequence (to be
explained shortly).
$S Treat the parameter asa BCPL string.
$US Treat the parameter as an unpacked string. Thisisavector consisting of a
character count in the first word followed by that number of characters right-
justified in succeeding words.
$C Treat the parameter as asingle right-justified character.
$#D Output the parameter as a decimal integer.
$#0 Output the parameter as an octa integer.
$#B Output the parameter as a binary integer.
$P Treat the parameter as a procedure, passing it the stream and the next parameter
as arguments (hence a $P uses up two of PutTemplate’ s parameters).
In the case of numeric output commands (namely $D, $0, and $B), a modifier sequence may be
included between the dollar sign and the command. These modifiers further control the
interpretation and formatting of the outpuit.
One kind of modifier is adecima number (of one or more digits). If present, it specifies the
minimum field width to be used in outputting the number. If the number contains fewer digits than
specified for the field width, then leading fill characters (normally spaces; see below) are supplied.
However, if the number contains more digits than will fit in the field, the width specification is

ignored and as many digits as necessary are printed. The default field width is one.

Other modifiers consist of single letters and are as follows:

Cleared version of May 24, 1981

Template Package October 1, 1976 133

U Treat the parameter as an unsigned rather than asigned integer. (Generally one
should invoke this modifier when outputting numbersin octal or binary.)

E Treat the parameter as a double-precision (32-bit) integer (mnemonic
"Extended"). In this case, the argument is a pointer to a two-word vector
containing the integer to be printed, with the high-order 16 bitsin the first word
and the low-order 16 bitsin the second. Double-precision numbers may be
treated as either signed or unsigned.

Fx Use the character "x" for leading fill, when necessary, rather than space.

For example, the escape sequence "$12UEF0O" will output an unsigned, double-precision octal
number, right-justified in a 12-digit field, with leading zeroes printed as zeroes rather than spaces.
PutTemplate will call SysErr if it encounters an escape sequence it doesn’t understand or if there
aren’t enough parametersto fill all the escape sequencesin the template. PutTemplate can handle a

maximum of 20 parameters.

Cleared version of May 24, 1981
Time Conversion May 6, 1981 134

Date and Time Conversion Package

IMPORTANT:
The operation of this package has changed significantly. Please read the revised description
carefully. Notein particular that the Timer and UpdateTimer procedures have been absorbed into
the Operating System, and that Day Time and SetDay Time have been replaced by ReadCalendar
and SetCalendar, which are also in the Operating System. This version of the Time package
functions only under O.S. version 14 or later.
This package provides facilities for converting date and time between internal and human-readable forms.
Date and time values have three different representations; packed, unpacked, and text.
The packed representation is a 32-hit integer representing number of seconds since midnight, January 1,
1901, GMT (Greenwich Mean Time). The Alto O.S. continuously maintains a date and time clock, whose
current value is available viathe ReadCalendar procedure, and which is used internally for such purposes
as time-stamping accesses to files.
The unpacked representation is a 7-word vector UTV, whose structure is defined in the definition file
Time.d. It describes a particular date and time in terms of separate year, month, day, hour, minute, and
second values, and is hence a more convenient representation for use during input and output of human-
readable date and time strings.
The text representation (either a string or characters passing through a stream) is one readable by a human
being. Thereisno standard format for this, though the Time package does define one particular format.
Procedures dealing with these representations are organized into three parts. Procedures for obtaining and
setting packed times are defined in the O.S. and are not included as part of the Time package, though they
are described here for convenience. Procedures for converting between packed and unpacked times are
contained in the files TimeConvB.Br and TimeConvA.Br. Proceduresfor converting between unpacked
times and text strings are contained in file Timel O.Br. Timel O requires the other two, but the reverse is

not true. All threefiles are distributed in the dump-format file Time.Dm.

1. Operating System Time Procedures

The following procedures are defined in the Alto Operating System:

ReadCalendar(ptv)
Reads the current packed date and time into the 2-word vector pointed to by ptv (packed
time vector). Returns ptv asitsvalue.

SetCalendar(ptv)
Declares the packed date and time pointed to by ptv to be the current date and time. (This
value might have been constructed using the PACKDT procedure in the time conversion
package. It is not reasonable to compute packed time values by hand.) Most programs
should have no occasion to call this procedure; it isintended for use by programs such as the
Executive' s SetTime command.

Timer(tv)
Reads amillisecond timer into the 2-word vector pointed to by tv, and returnstv!1 as its
value. Thistimer is maintained by the Operating System, but it bears no particular relation
to the date and time clock and has an arbitrary starting value. It isuseful primarily for

interval timing.

Cleared version of May 24, 1981

Time Conversion May 6, 1981 135
The old procedures DayTime and SetDay Time are still included in the O.S. for backward compatibility,
but they are simply aliases for ReadCalendar and SetCalendar and no longer convert between the old and

new time standards.

2. Time Packing and Unpacking

The proceduresin TimeConvB.Br and TimeConvA.Br convert between packed time vectors (ptv) and
unpacked time vectors (utv). The structure UTV isdefined in Time.d. It has the following components:
utv>>UTV.year Actual year (e.g., 1977)
utv>>UTV.month Month (January = 0)
utv>>UTV.day Day of month (first day = 1)
utv>>UTV .hour Hour of day (midnight = 0)
utv>>UTV.minute Minute
utv>>UTV.second Second
utv>>UTV .daylight 1if Daylight Savings Timeisin effect
utv>>UTV .weekday Day of week (Monday = 0, Sunday = 6)
utv>>UTV.zone Local time zone. This hasthree components. asign (O if west of
Greenwich, 1 if east), an hour value (number of hours east or west of
Greenwich), and a minute value (normally zero).
Note that a utv describes local time (with Daylight Savings Time already applied if appropriate) rather
than Greenwich Mean Time. The conversion procedures take care of the necessary time zone and DST
corrections.

UNPACKDT(ptv, utv)
Converts the packed date and time pointed to by ptv into the corresponding unpacked
representation, and stores the result in the unpacked time vector pointed to by utv. If ptv =
0, the present date and time are used. The procedure returns utv as its result.

PACKDT(utv, ptv, flag [fals€])

Performs the inverse of UNPACKDT, converting the unpacked date and time pointed to by
utv into packed format at ptv. Returns zero if successful and the index of an incorrect utv
element if unsuccessful (that is, 1 if the year wasillegal, 2 if the month wasillegal, etc.) The
weekday cell need not be valid, asit is recomputed by PACKDT.

If flag isfalse or omitted, the daylight and zone fields are ignored and val ues appropriate to
the date and time supplied and to the local time zone are used instead. Thisisthe correct
action in most situations. If flag istrue, the daylight and zone fields are used to control the
conversion, and no check is made of their reasonableness.

WEEKDAY (ptv)
Returns the day of week of the packed time vector ptv (Monday = 0, Sunday = 6). Note

that if you already have a utv, it is simpler just to extract the weekday field from it.

3. External Time Conversion

The module Timel O.Br provides facilities for converting between internal form and external text strings.
It requires the presence of the TimeConvB.Br and TimeConvA.Br modules aswell.

WRITEUDT(strm, utv, printZone [false])
Takes an unpacked time vector utv and writes it on the stream strm in the form "29-Dec-74
18:39:47". If utv = 0, the current date and time are used.

Cleared version of May 24, 1981

Time Conversion May 6, 1981 136
If printZoneis supplied and true, the time zone is appended to the result, e.g., "29-Dec-74
18:39:47 PST". For time zones outside North America, the timeiswritten as "29-Dec-74
18:39:47 +02" (2 hours west of Greenwich), or "29-Dec-74 18:39:47 -05" (5 hours east of

Greenwich), or "29-Dec-74 18:39:07 -01:30" (1 hour 30 minutes east of Greenwich).

WRITEUDT does not perform any of the error checks of PACKDT, so it will produce
garbage if given garbage.

CONVUDT(strg, utv, printZone [falsg])
Performs the same conversion as WRITEUDT, but deposits the result in the string strg.
Returns strg asits result.

FINDMONTH(strg)

Triesto interpret the string strg as the name of amonth. [f successful, returns the month
number (January = 0, December = 11); if unsuccessful, returns-1. Strg must be at least 3
characters long, and must be the prefix of some month name, ignoring upper/lower case
distinctions.

MONTHNAME(mo)
Returns a string which is the name of the month mo (0 to 11), fully spelled out (eg.,

"December”). The caller should not write into this string.

4. Implementation

Maintenance of the current date and time and the local time parametersis performed by severa
cooperating pieces of software, including the Operating System.

L ocations 570 through 577 in page 1 of Alto memory are reserved for use by the Time software. They must

not be overwritten by any booting or core image restoration process. Of these, locations 572 through 577
are used by the O.S. to maintain the calendar clock and millisecond timer. Thisis accomplished by caling
the UpdateTimer procedure during the display vertical field interrupt routine (60 times second).
UpdateTimer examines the clock maintained by the Alto microcode and appropriately updates the second
and millisecond clocks.
Locations 570 and 571 contain local time parameters required by the date and time conversion software.
These parameters are described by the structure LTP, defined in AltoDefs.d, which may be used in
constructs such as "timeParams>>L TP.zoneH".
sign Zero if the local time zone is west of Greenwich, oneif east.
zoneH Number of hours east or west of Greenwich, intherangeOto 12. The Pacific
time zoneis 8 hours west of Greenwich.
zoneM Additional minutes east or west or Greenwich, intherange0to 59. This is
usualy zero, but there are afew placesin the world whose local time is not an
integer number of hours from Greenwich.
beginDST The day of the year on or before which Daylight Savings Time takes effect,
where 1 = January 1 and 366 is December 31 (the correspondence between
numbers and days is based on aleap year). The software will adjust this
number to the nearest preceding Sunday. The standard valueis 121 = April
30.
endDST The day of the year on or before which Daylight Savings Time ends. The
standard value Is 305 = October 31. If Daylight Savings Time s not observed

locally, the beginDST and endDST values should both be set to 366.

Cleared version of May 24, 1981

Time Conversion May 6, 1981 137
Thelocal time parameters are set by the Executive's SetTime command from information obtained from
time servers on the local Ethernet. These values are also written into magic locationsin the O.S. boot
image so as to make them available even if, at some later time, no time server is available. When the O.S. is
booted, it checks to see whether the in-core values are reasonable, and if not attempts to restore them from

the magic locations in the boot image.

Cleared version of May 24, 1981

Timer Package February 26, 1976 138
Timer Package
This package contains a small set of trivial procedures for setting, testing, and blocking on timers. It exists
as a separate package so as to isolate its Alto-dependent implementation in one place (an exactly
compatible version for the Novais also available). For example, calls to thistimer package are scattered
throughout a rather large body of new Alto Pup software which is intended to run without change on the
Novaaswell. The package iswritten in assembly language and contains only 33 words of code.
A "Timer", as used in this package, is a single word whose address is passed to the proceduresin this
package and used as a temporary variable by those procedures. The actual manner in which thisword is
used is not of interest to callers.
The unit of timeis 10 milliseconds (again, for compatibility with the Nova). Since the Alto clock used in
this package (memory location #430) has an period of 39 milliseconds, intervals passed to these
procedures must be converted to Alto clock units. Fractions of an Alto tick are rounded up, with the effect
that the actual elapsed time will be at |east as great as that specified, possibly as much as 39 milliseconds
greater. These procedures are not intended for use in making precise measurements or maintaining clocks,

but rather for controlling asynchronous operations such as Pup timeouts and retransmissions.

InitializeTimer()

Initializes the timer package. It should be called once at the beginning of a program that uses the
other routines in this package. Inthe Alto version, InitializeTimer is a complete no-op, and is
included only for compatibility with the Novaversion in which some initiaization is actually
required.

SetTimer(lvTimer,Delta)
Sets the timer word pointed to by IvTimer so that it will expire at the current time plus Delta (in units
of 10 milliseconds). Deltamust be less than 2715 (alittle over 5 minutes).

TimerHasExpired(IvTimer) = true or false

Returnstrueif the timer pointed to by IvTimer has expired (i.e., the interval Delta specified in the
last SetTimer has elapsed).
Dismiss(Delta)

Blocks (1.e., suspends execution) until the interval Delta has elapsed (Deltais specified in units of 10
milliseconds and must be less than 2°15). Blocking is accomplished by calling the external procedure

Block(), which is defined in the BCPL Context Package and causes control to pass to other processes.

If the Context Package is not being used, it suffices to define an external procedure Block() which just
returns immediately. The effect of Dismiss(Delta) is approximately equivalent to the following

BCPL code, but implemented somewhat more efficiently:

let Timer=nil
SetTimer(lv Timer,Delta)
until TimerHasExpired(lv Timer) do Block()

Cleared version of May 24, 1981
Bcpl Trace package July 18, 1977 139

Bcpl/Asm procedure tracing package

This package makes it possible to trace Bcpl and Asm procedures on the Alto, similar to the TRACE
facility availablein Interlisp. The package normally uses Taft's Template (formatted output) package, but
is usable without it.

To start tracing calls and returns of procedure proc, call
Trace(proc, str)
where thq as described below, specifies the format of the output which Trace produces. To stop tracing
proc, ¢
UnTrace(proc).
If you want to trace a procedure but produce all the output yourself, you can call
ProcTrace(proc, tproc)

which turns on tracing of proc, but instead of using the second argument as an output template, causes
tproc to be called just before proc is entered and just after proc returns. The call when proc is entered is of
the form

tproc(proc, Iv arg0, n, 0)
where n isthe number of arguments and arg0 is the first argument; when proc returns, the call is

tproc(proc, v arg0, n, Iv val)
where val isthe value returned. (Note that tproc may alter the arguments or the return valueiif it wishes.)
Proc may be any Bcpl procedure (including the procedures in the Trace package or the PutTemplate
procedure), or any assembly language procedure that begins with the same 4 instructions as a standard
BCPL procedure, i.e.

STA 3,1,2

JSR @370

frame size

JSR @367

All output produced by tracing goes to the stream
TraceStream
or to the system display stream dsp if TraceStream is zero. If you set the static
TraceLines
to anon-zero value, the tracing routines will pause after every Tracelines lines of output, as follows:
print 3*’s,
wait for a character to be typed,
print 2 more*’s,
and then proceed. Other output to the same stream (e.g. from the program being traced) will not be
counted in the line count, since the tracing routines have no way to intercept it, but the package constructs
astream
TraceOuts
to which you can do Puts and which does the line counting.

The output produced for a Trace' d procedure consists essentially of the arguments when the procedure is
entered, and the value when the procedure returns. Output isindented 2N mod 16 spaces, where N is the
depth of nesting in traced procedures, similar to the Interlisp convention. (The procedure

Tracel ndent(stream)
writes the appropriate number of spaces on a stream, e.g. TraceOuts.) The format of the output is
determined by the str argument to Trace. There are 4 cases:

1) Str=0, or str omitted, e.g. Trace(foo). Inthiscase, the message on entry is

locfoo:
arglarg? ... argn
where locfoo isthe octal location of the first instruction of foo, and the arguments are printed in octal (by

Wos). Thereturn messageis
locfoo returns val
whereval is the value returned, also in octal.

Cleared version of May 24, 1981

Bcpl Trace package July 18, 1977 140
2) Str contains neither $; nor $:, e.g. Trace(foo, "Foo"). The messages are the same, except that the string

Foo appearsin place of the location locfoo.

3) Str contains a $;, e.g. Trace(foo, "foo: al=$D;foo = $O"). In this case, the portion of str before the $;

is used as the template given to PutTemplate for printing the arguments, and the portion after the $; is
used for printing the value. If there are more arguments than $ fields, the extra arguments are printed with
Wos; if there are fewer, printing stops after the last $ field for which an argument was supplied. This
produces pleasing output for procedures which take a variable number of arguments.

4) Str contains no $;, but does contain a $:, e.g. Trace(foo, "FOO: A1=$D"). Thisisequivalent to
Trace(foo, "FOO: A1=$D;FOOQ returns $6UQ"), i.e. the string up to the $: is taken as the procedure

name and the word "returns* and an octal format are supplied.

Of the 4 options, 1 and 2 do not require the presence of the Template package; 3 and 4 do require

Template If str contains any $fields. Inthelatter case, if the Template package is not loaded, all values will
be printed with Wos. Use of ProcTrace does not require the Template package, unless, of course, the

user’s own trace-print procedures use Template.

Note that Trace can be called from Swat, but only with str omitted or zero. ProcTrace and UnTrace can be
called freely from Swat.

Cleared version of May 24, 1981
UTILSTR March 4, 1977

UtilStr -- Utility and String Package

I. Introduction

UtilStr is a collection of BCPL subroutines that do string manipulation, double precision arithmetic,
some other things.

It should be noted that these routines don’t have much to do with each other, so if you only want to
some of them, feel free to extract or copy from the source code. UtilStr uses definitions from the
UtilStr.d. If you use UtilStr in some program, you will probably want to do a"get" on thisfile.
only uses routines from the O.S.

There are three sections to this document. Therest of this Introduction will give the various notational
naming conventions used in the other two. Section Il, "Descriptions of Subroutines’, givesthe
sequences and a brief description of each routine. Section 11, "List of Subroutines’, just lists all the
sequences. It is meant to be used for quick reference purposes.

Here are some notational conventions for what follows: Arguments enclosed in square brackets
optional. If an optional argument is followed by a slash, then whatever follows the slash is the
value for that argument. If thereis no dlash, then there is no default value. Whatever follows"->" is
indication of the return value of the routine (if any). str>>SL means the length of a string.

Hereisalist of conventions for argument names. In general, the "type" of an argument isindicated by
name.
value -- avalueis always associated with aradix which
specifies the value' stype
radix -- one of the following constants
(manifests are defined in the file Util Str.d):
2 -- binary integer
8 -- octal integer
10 -- decimal integer
16 -- hexadecimal integer
radixString (0) -- aBCPL string
radixFileName (-3) -- aBCPL string for alega file name
radixCharCode (-1) -- an ASCI| character code
radixSwitch (-2) -- something that is either true or false
num -- asigned integer
str -- aBCPL string, e.g., let str = vec IString, "literal string”
char -- an ASCI| character code, i.e., O le char le #377
sw -- aswitch, i.e., sw eq true % sw eq false
index -- a character position in astring
dbl -- adouble precision integer, e.g., let dbl =vec 1
M1, P1 -- minus 1 and plus 1 respectively

141

and

use
file
Util Str

and
caling
caling

are
default
an

its

Cleared version of May 24, 1981
UTILSTR March 4, 1977

I1. Descriptions of Subroutines
/I String manipulation
VaueToString (value, destinationStr, [radix/10]) -> destinationStr
Convert value to a string according to the radix and put that string in destinationStr.
StringToValue (sourceStr, [radix/10, [resultValue]]) -> value

Convert sourceStr to a value according to the radix. Put the valueinto resultValue if and only
radix specifies amultiword type thing.

CopyString (sourceStr, destinationStr) -> destinationStr
Copy sourceStr into destinationStr.
AppendChar (char, destinationStr) -> destinationStr
Append char onto destinationStr.
AppendString (sourceStr, destinationStr) -> destinationStr
Append sourceStr onto destinationStr.
AppendNum (value, destinationStr, [radix/10]) -> destinationStr
Convert value into a string according to radix and append it onto destinationStr.

MakeString (destinationStr, radix,value, [radix,value, ...])
-> destinationStr

Make up a string in destinationStr. Convert each of the values into a string according to its
radix and concatenate the strings.

ImbedChar (char, destinationStr, [index/destinationStr>>SL +1])
-> destinationStr

Imbed (insert) char in destinationStr at the position specified by index.

ExtragtStri ng (sStr, dStr, beginindexM 1, [endlndexP1/sStr>>SL +1])
-> dStr

Make a string in dStr from the charactersin sStr from beginindexM1 to endindexP1 exclusive.

SearchChar (searchStr, forChar, [beginindexM 1/0]) -> index/0

Search searchStr for forChar beginning at character position beginindexM1 + 1. If found,
the index, otherwise return 0.

SearchString (searchStr, forStr, [beginlndexM 1/0, [capSwi/false]]
-> index/0

Search searchStr for forStr beginning at character position beginindexM1 + 1. If found,
the index, otherwise return 0. If capSw, ignore capitalization.

StringEqual (strl, str2, [capSwi/false]) -> true/false
Decide whether or not strl eq str2. If capSw, ignore capitalization.

142

paired

return

return

Cleared version of May 24, 1981
UTILSTR March 4, 1977

/I Miscellaneous
Sc (numl, num2) ->-1/0/1
Y ou may not know it, but (exp relation exp) doesn’t work correctly if the two expressions differ
more that 2** 15. This routine works correctly for al values of num1 and num2. The results
the same as with Usc, i.e., -1 if num1 Isnum2, O if numl eq num2, and 1 if num1 gr num2.
Abs (num) -> num
= (num Is 0 ? -num, num)
Max (numl, num2) -> num
= (Sc (numl, num2) ge 0 ? numl, num?2)
Min (numl, num2) -> num
= (Sc (numl, num2) le 0 ? numl, num2)
MinMax (minNum, num, maxNum) -> num
= Min (maxNum, Max (minNum, num))
InBounds (minNum, num, maxNum) -> true/false
= Sc (minNum, num) le 0 & Sc (hum, maxNum) le 0
IntDivide (dividend, divisor) -> num
= (dividend + divisor - 1) / divisor
ZonelL eft (zone) -> available memory size
Return the size of the largest buffer left in zone.
WriteForm (stream, radix,value, [radix,value, ...])
Convert each value to a string according to its paired radix and write it to stream.
/I Double precision arithmetic
DbIMul (multiplicandl, multiplicand2, dblResult) -> dblResult! 1
dblResult _ multiplicandl * multiplicand2
DbIDiv (dblDividend, divisor, dblResult) -> dblResult! 1
dblResult _ dbIDividend / divisor
DblAdd (dbl Addend1, dblAddend2, dblResult) -> dblResult!1
dblResult _ dblAddendl + dbl Addend2
Dbl Sub (dblMinuend, dblSubtrahend, dblResult) -> dblResult!1
dblResult _ dblMinuend - dblSubtrahend
DblSingAdd (dbl Addend, addend, dblResult) -> dblResult!1

143

are

Cleared version of May 24, 1981
UTILSTR March 4, 1977

dblResult _ dblAddend + addend

DbIMulAdd (multiplicandl, multiplicand2, addend, dblResult)
-> dblResult!1

dblResult _ (multiplicandl * multiplicand2) + addend

DblMuIDiv (multiplicandl, multiplicand2, divisor, [dblResult])
-> dblResult! 1

dbl _ (multiplicand1 * multiplicand2) / divisor; if numargs eq 4, dblResult _ dbl

144

Cleared version of May 24, 1981
UTILSTR March 4, 1977

[11. List of Subroutines
/I String manipulation

VaueToString (value, destinationStr, [radix/10]) -> destinationStr
StringToValue (sourceStr, [radix/10, [resultValue]]) -> value
CopyString (sourceStr, destinationStr) -> destinationStr
AppendChar (char, destinationStr) -> destinationStr
AppendString (sourceStr, destinationStr) -> destinationStr
AppendNum (value, destinationStr, [radix/10]) -> destinationStr
MakeString (destinationStr, radix,value, [radix,value, ...])
-> destinationStr
ImbedChar (char, destinationStr, [index/destinationStr>>SL +1])
-> destinationStr
ExtractString (sStr, dStr, beginindexM1, [endlndexP1/sStr>>SL +1])
-> destinationStr
SearchChar (searchStr, forChar, [beginindexM 1/0]) -> index/0
SearchString (searchStr, forStr, [beginindexM 1/0, [capSwi/false]]
-> index/0
StringEqual (strl, str2, [capSwifalse]) -> true/false

/I Miscellaneous

Sc (numl, num2) -> -1/0/1

Abs (num) -> num

Max (numl, num2) -> num

Min (num1, num2) -> num

MinMax (minNum, num, maxNum) -> num
InBounds (minNum, num, maxNum) -> true/false
IntDivide (dividend, divisor) -> num

ZonelL eft (zone) -> available memory size
WriteForm (stream, radix,value, [radix,value, ...])

/I Double precision arithmetic

DbIMul (multiplicand1, multiplicand2, dblResult) -> dblResult!1
DblDiv (dblDividend, divisor, dblResult) -> dblResult! 1
DblAdd (dblAddendl, dblAddend2, dblResult) -> dblResult! 1
Dbl Sub (dblMinuend, dblSubtrahend, dblResult) -> dblResult! 1
DblSingAdd (dbl Addend, addend, dblResult) -> dblResult!1
DblMulAdd (multiplicand1, multiplicand2, addend, dblResult)
-> dblResult!1
DbIMulDiv (multiplicandl, multiplicand2, divisor, [dblResult])
-> dblResult!1

Cleared version of May 24, 1981
Virtua Memory package August 1, 1977 146

VMEM, avirtua memory package for the Alto

% Note: there has been a change in the division of VMEM procedures among the .BR files. See
the last section of thiswriteup for details. *****

The VMEM package provides a virtual memory facility for Alto programs. The virtual address space
is 2724 words; the page size is 28 (256, 400b) words.

The package uses several data structures for which you (the user) must supply storage, as follows:

1) A hash map, whose size is 2P+1 words, where P is the largest number of 256-word paging buffers
you will ever have allocated at one time, rounded up to a power of 2 (e.g. if you have 20K for paging
buffers, thisis 80 buffers, so P=128).

2) An optional logging area, located just below the hash map. If desired, VMEM will make an entry in

this area each time you make areference to a virtual address, and call a procedure when the area fills up.
3) A buffer pointer table of 256 words.

4) Paging buffers, as many as you want, located anywhere in core (not necessarily contiguous). Each
group of buffersistruncated if necessary so that it starts at an address which isamultiple of the page size
(400b) and is a multiple of the page size long.

5) A locked cell list of 2N+2 words, where N is the largest number of cells you will ever want to use as
locks (see below).

VMEM isdesigned to use special microcode loaded into the Alto microinstruction RAM, although it
will run properly without such microcode. Unfortunately, there is no straightforward procedure for getting
the relevant microcode into the RAM and getting it properly hooked up to the Novaemulator, if itis to
share the RAM with any other special microcode. People wishing to use the RAM with VMEM should be

prepared to include the microcode source in their own microprograms.

1. Initigization
VmemRam()
VmemSoft()
Before calling InitializeV mem, you must call one of these two procedures to tell VMEM whether or
not you are using the RAM. After calling InitializeVmem, you may call either of these procedures at any

timeif you want.

InitializeVmem(HMAP, HMAPSIZE, BPTAB, LCL, LLCL, MSBASE, MSPROC[, NBPROC])

HMAP is the address of the hash map; HMAPSIZE is 2P (256 in the example of 80 buffers.) (VMEM
will clear the hash map.) BPTAB isthe address of the buffer pointer table. LCL is the address of the
locked cell list, and LLCL isitslength. MSBASE isthe base of the logging area (below HMAP), or O if no
logging isdesired. MSPROC isthe procedure to call when the logging areafills up (see below). NBPROC
isan optional procedureto call when VMEM cannot find enough unlocked buffers to handle a page fault
or a SnarfBuffer call (see below): VMEM will call NBPROC and then try again, indefinitely. If NBPROC

isnot supplied, VMEM will call Swat instead.
AddBuffers(FIRST, LAST)

In order for VMEM to function, you must give it space for page buffers with AddBuffers. FIRST and
LAST are the bounds of a core areato be used for this purpose. FIRST will be rounded up to the next
multiple of the page size if necessary, and LAST+1 rounded down; thus AddBuffers(7700b, 10077b)

followed by AddBuffers(10100b, 10377b) will NOT result in the space from 10000b through 10377b being
made into a page buffer.

2. Mapping functions

Cleared version of May 24, 1981
Virtual Memory package August 1, 1977

A 24-bit address:
$+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$
| highpart | low part
$+-+-+-+-+-+-+-F -+t +-F -+
| virtual pagepart | word part |
$+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$

"The virtual address (HI, LO)" means a virtual address whose high part is bits 8-15 of HI (bits 0-7
zero) and whose low part isLO.

For implementation reasons, virtual pages -8 through -1 are not legal. If you try to read from page
you will get back unspecified data. If you try to read from pages -8 through -2, or write in any of
pages, VMEM will call Swat.

All of the mapping functions described in this section are declared global (page zero), so you
declare them external with @-sign.

VRR2(HI, LO)

Returns a core address corresponding to the virtual address (HI, LO), having read the page into
buffer if necessary.

VWR2(HI, LO)

Same as VRR2, but assumes you are about to write into the page, so marks it as needing to
rewritten onto the disk.

VRR1(LO)

Same as VRR2(0, LO). If you only have a 216-word virtual space, you can save a small amount
code by using VRR1 instead of VRR2.

VWR1(LO)
Same as VWR2(0, LO).
VRR(PTR)

Same as VRR2(PTR!0, PTR!1). Useful if you are carrying around addresses in vectors, as Lisp does.

VWR(PTR)

Same as VWR2(PTR!O0, PTR!1).
VRRP(VP)

Same as VRR2(VP RSHIFT 8, VP LSHIFT 8), i.e. converts avirtual address whose virtual
number is VP and whose word part is zero. Useful if you are only using the virtual memory package
manage buffers, and doing your own data scanning.

VWRP(VP)

Same as VWR2(VP RSHIFT 8, VP LSHIFT 8).

3. Statistics
MSPROC(ARG, N[, VP]) [MSPROC from InitializeV mem]

147

being

-1,
these

must

be

of

page
to

Cleared version of May 24, 1981

Virtual Memory package August 1, 1977 148
If N<O, ARG is a core page number (i.e. a core address divided by 400b), and the type of event
depends on N as follows:
N=-1: page ARG is being freed because it is needed for some other purpose than holding its current
page of data. VP isthe virtual address currently in the page.
N=-2: page ARG, formerly not available to VMEM, has now become available (through AddBuffers

or UnsnarfBuffer).
N=-3: page ARG, formerly available to VMEM, has now become unavailable (through SnarfBuffer).

If N>=0, ARG isthe MSBASE argument to InitializeV mem or InitSoftVmem, and N words (N/2
entries) starting at ARG contain 2-word entries representing calls on the address mapping functions. Each
entry consists of a 24-bit virtual address with the top 8 bits unused: no distinction is currently made
between reads and writes. If you are not using the RAM, VMEM will start reusing the area starting a
MSBASE; however, if you are using the RAM, VMEM cannot determine the correct value of N (and will

call MSPROC with N=0), so MSPROC must return this value and reset the R or Sregister itself.

4. Other facilities

REHASHMAP(VP)
Looks up the virtual address VVP*400b in the hash map, returning O if present, or the address of an
appropriate empty slot in the hash map if not present. Used by the page fault routine to reconstruct the

hash map, but also useful for determining quickly whether apageisin core.
Virtual Page(CPAGE)

Returns the virtual page currently occupying core page CPAGE. Returns-2 if CPAGE is currently
empty, or -3 if CPAGE is unavailableto VMEM. If CPAGE isnot in the range 0to 377b inclusive, returns
garbage.

SnarfBuffer(BUFPTR[, NBUFS, ALIGN])

BUFPTR must be the address of a buffer (i.e. amultiple of the page size) within the scope of some
previous call to AddBuffers, or 0 meaning any buffer(s) will do and SnarfBuffer should find it (them). The
effect of SnarfBuffer isto remove NBUFS (default is 1) buffers starting with that buffer from use by

VMEM. A typical application of SnarfBuffer isto acquire space for display data or Ethernet buffers.

If BUFPTR is non-zero and some buffer in the specified range is locked (see below), SnarfBuffer
returns O; normally SnarfBuffer returns the address of the buffer.

If you need a group of buffers aligned as described under PageGroupAlign below, you may aso
supply an ALIGN argument, which works the same way as the value returned by PageGroupAlign.

UnsnarfBuffer(BUFPTR)

Reverses the action of SnarfBuffer. If you acquired arange of buffers, you must return them one at a
time with UnsnarfBuffer.

LockCell(LVLOCK, PROC)

Declares that the cell whose addressis LVLOCK holds a core address which must remain valid across
page faults, i.e. the buffer in which it lies must not be re-used. Note that the extralevel of indirection
means that your program can store into the lock cell freely. Asaconsequence, if you store some arbitrary
BitfPattern into alock cell, it will function as alock if it happens to constitute an address within some

uffer.

When the virtual memory system wants to change the contents of a buffer, it goes through the lock list
and calls PROC(LVLOCK, NEWADDR, false) for each lock cell which contains a pointer into the buffer,

where NEWADDR is the proposed new core address for the page (if it isjust being moved around in core,

Cleared version of May 24, 1981
Virtual Memory package August 1, 1977 149

e.g. to make room for a page group) or O (if it is being written out). If any PROC returns false, the system
will refrain from the proposed action. If all PROCs return true, the system calls PROC(LVLOCK,
NEWADDR, true) for each appropriate lock cell, and updates the contents of the lock cell (zeroing it if the
page is being written out) in the process. Note that in the latter case, the lock cell will NOT be restored
automatically if the pageisread back in at some future time.

The number of different lock cellsislimited to the parameter LLCL supplied to InitializeV mem,
divided by 2, minus 1. If thelock listisfull, LockCell calls Swat.

The system provides the procedures LockOnly, LockReloc, and LockZero, described below, simply
because they are useful default actions: the user may provide an arbitrary procedure for PROC.

LockOnly(LVLOCK, NEWADDR, FLAG)
If the PROC parameter of LockCell is LockOnly, the system will not move or write the page.
LockReloc(LVLOCK, NEWADDR, FLAG)

If the PROC parameter of LockCell is LockReloc, the system may move the page in core (updating
the lock cells), but will not writeit out.

LockZero(LVLOCK, NEWADDR, FLAG)

If the PROC parameter of LockCell is LockZero, the system may move or write the page whenever
necessary, zeroing the lock cell in the latter case.

UnlockCell(LVLOCK)

Undoes the action of LockCell. Returnstrueif LVLOCK was actually in the lock cell list, or false if it
was not.

IsLocked(PTR, FLAG)

If PTR isapointer into alocked buffer, returnstrue, otherwise returnsfalse. If FLAG=true,
IsLocked returns true even if there are locked pointers into the same buffer as PTR, provided that the
relocation procedures are willing to have the buffer swapped out; if FLAG=falseor FLAG is absent,
IsLocked only returns true if there are no locked pointers to the buffer whatever.

Note that if the page addressed by PTR itself is not locked, IsLocked will return false even if there
exist locked pointers to other pages in a page group which PTR pointsinto.

FlushBuffers()

Rewrites all dirty pages from buffers onto the disk, including locked pages, and generally tidies things
up in preparation for quitting. (It is OK to go on using the virtual memory after this, you just have to do
another FlushBuffers before quitting eventually.)

5. User routines

The VMEM package does not assume any particular correspondence between virtual addresses and
disk pages, or indeed that you are using the disk at all: for example, you can use the Ethernet for paging if
this suits your fancy, or store the datain some compressed form on the disk. Consequently, you must
supply a number of routines to establish the correspondence between virtual page addresses and stored
data.

CleanupL ocks()

Thisroutineis called on every page fault, and at other times when VMEM needs to know that the

Cleared version of May 24, 1981

Virtual Memory package August 1, 1977 150
contents of the lock cells are correct. Normally, CleanupL ocks need not do anything; however, if you have
pointers in microcode registers or other non-standard places which point into page buffers, CleanupLocks

should copy them into lock cells known to VMEM.
PageType(VPAGE, WFLAG)

Thisroutineis called on a page fault to determine if a page has never been referenced, already exists,
orisinvalid. VPAGE isavirtual page number (the high 16 bits of a 24-bit address); WFLAG istrue if the
fault was from awrite reference, false if from aread reference. PageType must return 1 if the pageis an
existing page, or -1 if anew page. If VPAGE isinvalid, PageType can do whatever it wants, but it should
not return.

PageGroupBase(VPAGE)
PageGroupSize(VPAGE)

These routines are for applications where it is necessary to cause a group of pages, rather than a single
page, to always be transferred into and possibly out of core at the same time and to occupy consecutive
page buffers. PageGroupBase must return the virtual page number of the first pagein the group;
PageGroupSize must return the size of the group. If you are not using page groups, PageGroupBase

should return its argument, and PageGroupSize should return 1.

VMEM distinguishes between read groups, in which individual pages may be rewritten if they become
dirty, and write groups, in which the entire group must be rewritten if any page becomes dirty. For write
groups, PageGroupSize must return the negative of the size of the group.

PageGroupAlign(VPAGE)

Occasionally it is necessary to align a page or group of pages so that some of the bits of the core
address are zero; for example, if you want to get the effect of 1000b-word pages, it is necessary to align
each group so that the 400b-bit of its core address is zero. PageGroupAlign should return a mask which
specifies which of the high-order 8 bits of the core address must be zero; in the example, PageGroupAlign
should return 1. For pages which do not require alignment (the usual case), PageGroupAlign should
return O.

DOPAGEIO(VPAGE, CORE, NPGS, WFLAG)

This routine must transfer NPGS 256-word pages, starting at virtual page VPAGE and core address
CORE, to or from the swapping medium, depending on WFLAG: false means read, true means write.

6. Standard use

The standard use of VMEM isto do swapping on a standard disk file in which virtual page N
correspondsto file page N+2 (page 1 is reserved for use as an index, and page 0 is the leader page), using
the | SF package (described elsewhere) to obtain rapid random access to the file. The following program
fragment will accomplish this, assuming you are just using 400b-word pages in the most straightforward

way.

external [l entriesfor VMEM
[CleanupLocks
PageType
PageGroupSize
PageGroupBase
PageGroupAlign
, DOPAGEIO

external /I linksto ISF
[InitFmap

Cleared version of May 24, 1981
Virtual Memory package August 1, 1977

IndexedPagel O

static
][MyFmap // pointer to work areafor | SF

/I Toinitialize ISF, set MyFmap to point to awork area
/I of size MyFmapL ength, and then call

/I InitFmap(MyFmap, MyFmapL ength, FilePtr, true)
/I where FilePtr is a FP (see the O.S. manual)

/[for the paging file. A reasonable value for

/I MyFmapLength is 80 -- see the | SF writeup.

let CleanupLocks() be|]

let PageType(vp) =1

let PageGroupSize(vp) = 1

let PageGroupBase(vp) = vp
let PageGroupAlign(vp) =0

let DOPAGEIO(vp, core, np, wflag) be
][IndexedPagel O(MyFmap, vp+2, core, np, (wflag?-1, 1))

7. Packaging

The VMEM package actually consists of several files:

VMEM .BR - the code required to process page faults, plus LockCell and UnlockCell

VMEMAUX.BR - all the other entriesto VMEM, except InitializeVmem

VMEMINIT.BR - InitializeVmem

VMEMA .BR - asmall amount of assembly-language code

VMEMSOFT.BR - a software version of the VMEM microcode

VMEM.USE - the program fragment listed above

VMEM.MU - the VMEM microcode.
You must load VMEM, VMEMAUX, VMEMINIT, and VMEMA with your program, and
VMEMSOFT if (asis normally necessary) you are not using the RAM. In addition, you must load the
package (files ISF.BR and ISFINIT.BR) if you are using VMEM in the standard manner described
Once you have called InitializeVmem, you may throw away VMEMINIT; once you have done all
callson AddBuffers, etc., you may throw away VMEMAUX.

151

