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1.  Introduction

Research in network interconnection techniques has been motivated by the desire to permit

communication among diverse, geographically distributed computing resources and users

interconnected by a wide variety of network technologies.

It is the purpose of an internetwork architecture to provide a uniform framework for

communication within a heterogeneous computing, communication, and applications environment.

The work described in this paper represents one internetwork architecture, known as Pup, in

widespread regular use within Xerox.  The name referred originally to the abstract design of a

standard internetwork datagram (the PARC Universal Packet), but has expanded in usage to include

the whole hierarchy of internetwork protocols as well as a general style for internetwork

communication.

To assist in understanding the design of the Pup protocols, it is useful to characterize briefly

the environment in which this architecture has evolved.

The computational environment includes a large number of ��Alto’’ minicomputers [Kay, 1977;

Thacker et al., 1979] and other personal computers capable of high-quality interaction with human

users.  Supporting these are various specialized server systems that are shared among many users

and provide access to expensive peripherals such as large disks, magnetic tapes, and high-quality

printers.  Additionally, there are several general-purpose time sharing systems providing customary

services for terminal users.

The communications environment includes several different individual network designs.  The

dominant one is the ��Ethernet’’ communications network, a local-area broadcast channel with a

bandwidth of 3 megabits per second [Metcalfe & Boggs, 1976].  Long-haul communication facilities

include the Arpanet, the ARPA Packet Radio network, and a collection of leased lines implementing

an Arpanet-style store-and-forward network.  These facilities have distinct native protocols and

exhibit as much as three orders of magnitude difference in bandwidth.

The applications to be supported include a wide range of activities: terminal access to the time

sharing services, electronic mail, file transfer, access to specialized data bases, document

transmission, software distribution, and packet voice, to name just a few.  We would also like to

facilitate more ambitious explorations into the area generally referred to as ��distributed computing.’’

This paper is organized as follows.  In section 2 we discuss some of the design issues which

have emerged in the formulation of the Pup architecture, while section 3 provides more detail on

the protocols themselves.  Section 4 describes briefly some of our operational experience with the

present implementation.  The final section presents a retrospective critique of the work, highlighting

some areas which merit further attention.
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2.  Design principles and issues

Constructing an architecture for internetwork protocols is, first and foremost, an exercise in

design: identifying individual issues, exploring alternative solutions, and then knitting these pieces

together to form the final result.  Along the way, many compromises are made as one trades off

among different criteria: functionality, efficiency, generality, ease of implementation, extensibility,

and others.  

In this section we enumerate some of the major design issues confronted in the development of

a network architecture and describe, in general terms, the choices made in the development of Pup.

(Several of these and other issues are enumerated in [Cerf & Kirstein, 1978] and [Postel, 1980].)

From this discussion the broad outlines of Pup will emerge; the section that follows provides more

specific detail about the actual design.

2.1. The basic model: individual networks connected with gateways

As with most internetwork models, one envisions a collection of heterogeneous networks,

connected with a set of internetwork gateways to form a loosely coupled system known generally as

an internet [Cerf & Kahn, 1974; Sunshine, 1977a; Cerf & Kirstein, 1978].  An internet should

provide the ability for any two hosts to communicate, so long as their own local networks are

interconnected.

An important feature of the Pup internet model is that the hosts are the internet.  Most hosts

connect directly to a local network, rather than connecting to a network switch such as an IMP, so

subtracting all the hosts would leave little more than wire.  Gateways are simply hosts in the

internet that are willing to forward packets among constituent networks.  Thus, most of the

properties of the internet are primarily artifacts of host software.  The architecture must scale

gracefully, and in particular must allow for the existence of a degenerate internet consisting of a

single local network and no gateways.

2.2. Simplicity

One of the guiding principles in designing Pup has been the desire for simplicity.  Pup is a

framework for computer communications research, and simplicity is one of the best ways to

minimize restrictions and maximize flexibility for experimentation.  Attempting deliberately to

eliminate unneeded complexity helps to keep the design open-ended.  This in turn makes it easier

to incorporate the existing diverse collection of networks and hosts and to accommodate new

alternatives as the technology matures.  Keeping the design simple helps to avoid building in

technological anachronisms.

A second motivation for this principle is the desire to foster efficient implementations of the

protocols in the host machines, which are typically quite small.  Software overhead must be kept
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low in order to sustain high-bandwidth local communication, which constitutes the bulk of the

traffic; yet the same software must support the full generality of internetwork communication.

2.3. Datagrams versus virtual circuits

There are two major approaches to providing an interface to packet-switched communications:

accepting individual datagrams, or providing a higher level of service in the form of a virtual circuit.

The two interfaces are not unrelated, since a virtual circuit interface is usually implemented within a

network by the use of datagrams.  In some sense, datagrams provide access to a network at a lower

level, closer to its underlying capabilities.  Datagrams are particularly useful in many kinds of

transaction-oriented protocols.  Furthermore, the task of the internet is significantly simplified if it

need only transport independent, individually-addressed datagrams, without having to maintain the

state required to support virtual circuits.  If the internet provides a datagram interface, virtual circuit

interfaces can be provided by adding appropriate mechanisms at the end points.

Therefore, the basic function provided by the Pup internet is the transport of datagrams; this

simple abstraction is the foundation of Pup.  The internet does not guarantee reliable delivery of

datagrams (called ��Pups’’);  it simply gives its ��best efforts’’ to deliver each one, and allows the end

processes to build protocols which provide reliable communications of the quality they themselves

desire [Metcalfe, 1973].  The internet has no notion of a connection.  It transports each Pup

independently, and leaves construction of a connection�if that is the appropriate interprocess

communication model�to the end processes.  Keeping fragile end-to-end state out of the packet

transport system contributes to reliability and simplicity.

2.4. Individual networks as packet transport mechanisms

Individual networks within the internet can be viewed simply as packet transport mechanisms.

As links in the internet they give their best efforts to deliver internet packets, but they do not

guarantee reliable delivery.  Packets may be lost, duplicated, delivered out of order, after a great

delay, and with hidden damage.  A network can have any combination of bandwidth, delay, error

characteristics, topology, and economics; the routing algorithm should attempt to take these

characteristics into consideration.

Encapsulation is an invertible, network-dependent transformation performed on a Pup to permit

it to be carried transparently through a network: an abstract Pup is presented at one end,

encapsulated for transmission through the net, and decapsulated at the other end, yielding the

original Pup.  For some networks, encapsulation consists merely of adding headers and trailers.

More elaborate transformations may be necessary to pass a Pup through other networks (for

example, using low-level acknowledgments or error correction because the network has a high loss

rate).  Encapsulation and decapsulation take place in a network-specific driver in which is vested all

knowledge of the encapsulation technique.  The internet specification has nothing to say about

encapsulation except that it be invisible.
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2.5. Internetwork gateways

We distinguish two kinds of gateways: media translators and protocol translators.  Media

gateways are hosts with interfaces to two or more packet transport mechanisms among which they

forward internet datagrams, using the appropriate encapsulation for each.  These are the heart of

any datagram-based internet.  Protocol gateways are hosts which speak two or more functionally

similar but incompatible higher-level protocols used to transport information within networks,

mapping one higher-level abstraction into the other.  (It’s clear that a media gateway is just doing

protocol translation at the link level, but the distinction is useful given the importance of internet

datagrams in this architecture.)  

In the Pup internet, media gateways are by definition simple, since all that is required of the

translation process is that it preserve the semantics of internetwork datagrams.  Protocol gateways

are usually more difficult, even when the protocols are similar, since such higher-level protocols

provide richer and more specialized semantics and it is not always clear how one should map the

functionality of one protocol into another.  Development of higher-level protocol translators

between different network and internet architectures�e.g., between the Arpanet File Transfer

Protocol (FTP) and the Pup-based FTP�is a thorny task, but one that must be confronted when

interconnecting systems that do not share the necessary lower-level primitives. 

2.6. A layered hierarchy of protocols

Layering of protocols is one of the most effective means for structuring a network design: each

level uses the functions of the lower level, and adds some functionality of its own for possible use

by the next level.  Provided that suitable interfaces are maintained, an implementation at one level

can be modified without impacting the overall structure; this helps to simplify both the design and

the implementation.

Pup protocols are organized in a hierarchy, as shown in figure 1; the details of this figure will

be presented in section 3.  A level represents an abstraction, to be realized in different ways in

different hosts.  There are four levels of interest, but there may be more than one protocol at any

level except level 1, representing a different use of the underlying layers.  (The numbering of

layers�and, indeed, the choice of points at which to divide the layers�is arbitrary; there is no

relationship between Pup’s numbering and that of other designs such as the Open Systems

Architecture.)

The level 0 abstraction is a packet transport mechanism.  There are many realizations: an

Ethernet channel, the Arpanet, the ARPA Packet Radio Network, our store-and-forward leased line

network, and others.  Level 0 protocols include specifications such as hardware interfaces, electrical

and timing characteristics, bit encodings, line control procedures, and network-dependent packet

formatting conventions.  Associated with each packet transport mechanism is a convention for

encapsulating Pups.
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Figure 1.  Pup Protocol Hierarchy
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The level 1 abstraction is an internet datagram.  The realization of this abstraction consists of

the format of a Pup, a hierarchical addressing scheme, and an internetwork routing algorithm.

There is only one box at level 1: the internet datagram protocol; it is this layer of commonality

which unifies all of the different networks that might be used at level 0, and which makes available

a uniform interface to all of the layers above.  It is the purpose of this level to provide media

independence while maintaining the common properties of the underlying packet networks.

The level 2 abstraction is an interprocess communication mechanism: a way to move bits

without saying much about their form or content.  Various level 2 protocols provide many

combinations of reliability, throughput, delay, and complexity.  These protocols can be divided into

two classes according to the amount and lifetime of state information kept by the communicating

end processes.  Connectionless protocols support short-lived interactions; the end processes maintain

little state, and usually only during the exchange of a few Pups�no more than a few seconds.

Connection-based protocols support sustained interactions, generally requiring substantial state to be

maintained at both ends, and for longer periods�minutes to hours.

Level 3 adds structure to the data moved at level 2, as well as conventions for how processes

interact.  For example, the File Transfer Protocol (FTP) consists of a set of conventions for talking

about files and a format for sending them through a level 2 byte stream protocol connection.  These

are sometimes referred to as function-oriented protocols [Crocker et al., 1972].

Above level 3 the dividing lines become blurred, and individual applications evolve with their

own natural decomposition into additional layers.  With respect to layering of protocols, Pup is

similar in many ways to the ARPA Internet and TCP design [Cerf & Kahn, 1974] and the Open

Systems Architecture [Zimmermann, 1980].  Unlike the Open Systems Architecture (and others),

Pup often has several alternative boxes which all rest on a lower level and offer different

functionality and interfaces to the next higher level.

2.7. Naming, addressing, and routing

Names, addresses and routes are three important and distinct entities in an internet [Shoch,

1978]:

The name of a resource is what one seeks,
an address indicates where it is, and
a route is how to get there.

A name is a symbol, such as a human-readable text string, identifying some resource (process,

device, service, etc.)  An address is a data structure whose format is understood by level 1 of the

internet, and which is used to specify the destination of a Pup.  A route is the information needed

to forward a Pup to its specified address.  Each of these represents a tighter binding of information:

names are mapped into addresses, and addresses are mapped into routes.  Error recovery should

successively fall back to find an alternate route, then an alternate address, and then an alternate

name.
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The mapping from names to addresses is necessarily application-specific, since the syntax and

semantics of names depend entirely on what types of entities are being named and what use is

being made of them.  This is dealt with at the appropriate higher levels of protocol.

An address field, as contained in a Pup, is one of the important elements of commonality in

the internet design.  An end process sends and receives Pups through a port identified by a

hierarchical address consisting of three parts: a network number, a host number, and a socket

number.  This structure reflects the attitude that the communicating parties are the end processes,

not the hosts’ protocol handlers; among other things, this permits alternate implementations of a

higher-level protocol to coexist in a single machine.  (In contrast, the ARPA Internet project [Postel,

1980] takes the position that the socket abstraction does not belong at the internet level; therefore,

ARPA Internet addresses contain only network and host numbers.  When a packet arrives, it is first

demultiplexed by the protocol type field in the internet header; higher-level protocols such as the

TCP, datagram protocol, and packet voice protocol then impose their own concept of socket if they

find it useful�which, as a practical matter, they all do.)

The actual process of routing a packet through the Pup internet uses a distributed adaptive

routing procedure.  The source process specifies only the destination address and not the path from

source to destination.  The internetwork gateways route Pups to the proper network, a network then

routes Pups to the proper host, and a host routes Pups to the proper socket.  

This routing process is associated with Level 1 in the protocol hierarchy, the level at which

packet formats and internet addresses are standardized.  The software implementing level 1 is

sometimes referred to as a router.  Thus, the routing table itself is kept at level 1; a very simple host

(or gateway) would need only levels 0 and 1 in order to route Pups.  But the routing table also

requires periodic updating, as gateways exchange and distribute their current routing information;

this routing table maintenance protocol is found logically at level 2 of the hierarchy.

Gateways provide internet routing tables to individual hosts as well as to each other.  Hosts use

this routing information to decide where to send outgoing packets destined other than to a directly-

connected network.

2.8. Flow control and congestion control

Although the terms are often confused, flow control and congestion control attack two very

different problems in packet-switched communication.  Flow control is a mechanism used to

regulate the behavior of a specific source and destination pair, so that the source does not send data

at a rate greater than the receiver can process it.  In an internet architecture, flow control remains

the responsibility of the end-to-end protocols, particularly those at level 2 supporting regular stream

traffic.

Congestion control is a network-wide mechanism, used to control the number and distribution

of packets in the network so as to prevent system overload.  Internet congestion control is necessary

to help protect the gateways from being burdened with excessive traffic.
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The Pup datagram-based internet model does not require that the internet successfully deliver

every packet that has been accepted.  Therefore, an intermediate gateway which suddenly

encounters a period of severe congestion is free to discard packets, although the system should be

engineered to make this an uncommon event.

If a gateway is forced to discard an incoming packet because of congestion, it should attempt to

return some information to the source: an error Pup (negative acknowledgment) indicating that a

packet had to be discarded in mid-route.  This error Pup is simply returned to the source port, as

identified in the discarded Pup; this is a good illustration of the value of including the socket

number as part of the standard internet address.  The source process can use this information to

modify its transmission strategies�for example, to reduce its offered load (the rate at which it

attempts to send Pups along the congested path) and thereby help to relieve the congestion.

Long-term congestion should eventually be reflected in the routing information exchanged

among gateways, discouraging subsequent traffic from attempting to pass through a badly congested

area.

2.9. Reliable transport

Defining datagrams to be less than perfectly reliable is realistic since it reflects the

characteristics of many existing packet transport mechanisms.  Probabilistic transmission is basic to

the theory of operation of network designs such as Ethernet.  Even in networks nominally designed

to deliver correctly sequenced, error-free packets, occasional anomalies may result from certain

hardware or software failures: an Arpanet IMP may crash while holding the only copy of a packet,

or an X.25 virtual circuit may be reset.

As mentioned previously, the Pup internet always has the option of discarding packets to

relieve congestion, though this is certainly not an optimal strategy.  This point is of considerable

practical importance when one considers the complicated measures required to avoid deadlock

conditions in the Arpanet�conditions which are a direct consequence of attempting to provide

reliable delivery of every packet in a store-and-forward network [Metcalfe, 1973; McQuillan &

Walden, 1977].  Packet management strategies that attempt to guarantee perfect reliability must be

designed to operate correctly under worst case conditions, whereas strategies that have the option of

discarding packets when necessary need operate correctly only under most conditions.  The idea is

to sacrifice the guarantee of reliable delivery of individual packets and to capitalize on the resulting

simplicity to produce higher reliability and performance overall.

For some applications, perfectly reliable transport is unnecessary and possibly even undesirable,

especially if it is obtained at the cost of increased delay.  For example, in real-time speech

applications, loss of an occasional packet is of little consequence, but even short delays (or worse,

highly variable ones) can cause significant degradation [Cohen, 1977; Sproull & Cohen, 1978].
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Reliable delivery requires maintaining state information at the source and destination.  The

actions of a large class of simple servers, such as giving out routing tables or converting names into

addresses, are idempotent (i.e., may be repeated without incremental effects), and a client of that

service can simply retransmit a request if no response arrives.  These protocols reduce to a simple

exchange of Pups, with an occasional retransmission by the client, but with no state retained by the

server.  (The server may choose to retain answers to the last few requests to improve response time,

but this optimization is invisible to the protocol.)

On the other hand, many applications such as file transfer and terminal connection do depend

upon fully reliable transmission.  In these cases, it is perfectly reasonable to build a reliable end-to-

end protocol on top of the internet datagrams.  Ultimately, reliability (by some definition) is always

required; the issue is where it should be provided.  The Pup attitude is that it is the responsibility

of the end processes to define and implement whatever form of reliable transport is appropriate to

the situation.

2.10. Packet fragmentation

It is inevitable that some process will want to send an internet packet which is too large to be

directly encapsulated for transmission through an intermediate network that has a smaller maximum

packet size.  This problem is usually approached with one of two forms of packet fragmentation

[Shoch, 1979a].

With internetwork fragmentation, an internet-wide design specifies the operations to be

performed on a packet that is too large for a network it is about to enter.  The internet datagram is

fragmented into a number of smaller internet datagrams, thereafter to be transported independently

and reassembled at the ultimate destination.  This is the approach taken, for example, in the ARPA

Internet design.  It requires every destination to have procedures for reassembly.

Alternatively, one may use intranetwork fragmentation (or network-specific fragmentation):

when presented with an oversize packet, the network-specific driver undertakes to fragment the

packet in a manner specific to that network, to be reassembled by the corresponding driver as the

packet exits the network (e.g., at the next gateway).  This approach confines the fragmentation and

reassembly procedures to the level 0 modules of hosts directly connected to the network in which

fragmentation is required.

The Pup design does not attempt to provide any form of general internetwork fragmentation.

This complex issue has been simply legislated out of existence by requiring that every agent in the

internet handle Pups up to a standard maximum size, using network-specific fragmentation where

necessary.  
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2.11. Broadcast packets

Broadcast packets are a particularly useful means for locating available resources or distributing

information to many hosts at once.  Some local networks, such as the Ethernet, directly support

transmission of broadcast packets.  In store-and-forward systems, however, specialized algorithms are

required to propagate a packet efficiently to all hosts [Dalal, 1977; Dalal & Metcalfe, 1978]; no

existing store-and-forward networks support any technique besides brute-force transmission of a

packet to every node, though such a capability is now being implemented in the Arpanet.

Broadcasts may also be expensive since every host that receives one must expend some

resources, if only to discard it.  In networks where a broadcast involves generating more than one

packet, there is the additional cost of creating and transporting the extra copies.  Because of their

potentially high cost, internet-wide broadcasts are not presently supported in the Pup design.  Nor is

it clear that such a capability would be desirable, since it would not extend well to a very large

internet.  The problem of locating distant resources in the internet at reasonable cost is a topic of

current research.

But Pups can be broadcast on a single network; they are frequently used to locate nearby

resources, or to permit gateways to announce their presence on a network.  Implementation of the

broadcast procedure is left to the network-specific driver, using the best technique available on that

net.

2.12. Privacy and security

It must be recognized that in practical internet environments, packets may be delivered to the

wrong host, intercepted by another host, or generated by a host masquerading as some other host.

To prevent this would require one to interpose some agent between hosts and the internet and to

specify a secure access control procedure.  This would significantly increase the complexity of the

internet, and truly suspicious users would probably not trust it anyway.

Processes are encouraged, however, to ensure the privacy and authenticity of their

communication by whatever end-to-end encryption techniques seem appropriate [Needham &

Schroeder, 1978].  Particularly vulnerable components, such as gateways and servers, should take

precautions to protect their own integrity, but ultimate responsibility rests with the end processes.

The Pup internet does not attempt to protect users from traffic analysis or from malicious replay of

previous traffic.
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3.  Implementation

The preceding section has outlined some of the important properties of the Pup architecture

and the internetworking issues it addresses.  What follows is a more detailed description of the

present design of the four major layers in the system.

3.1. Level 0: packet transport

An individual network moves network-specific packets among hosts; the addressing schemes,

error characteristics, maximum packet sizes, and other attributes of networks vary greatly.  An

internetwork packet transport mechanism, however, moves Pups between hosts.  The level 0 code

which transforms a network into an internet packet transport mechanism is called a network driver.

A machine connected to a single network, therefore, has one level 0 network driver; a gateway

has one driver for each directly-connected network.  Only the driver knows about the peculiarities

of a network’s hardware interface and low-level protocol.

The interface between levels 0 and 1 is very simple.  Level 1 passes down a Pup and a

network-specific host address, and the driver encapsulates the Pup and does its best to deliver it to

the specified host.  When a Pup arrives at a host, the driver decapsulates it and passes it up to level

1; if for any reason the Pup looks suspicious (as determined by network-specific error checking), the

driver discards it.

Every packet transport mechanism must be able to accept a maximum-size Pup; if the actual

network cannot directly encapsulate a packet of that size for transmission, the driver must include

some form of intranetwork fragmentation.

A network driver may also be asked to broadcast a packet to all other hosts on that net.  On

some networks this is straightforward; on others it may require use of a reverse-path forwarding

algorithm [Dalal & Metcalfe, 1978] or brute-force replication of the packet to each destination.

The transport mechanisms don’t have to be perfectly reliable, but they should be successful

most of the time�a packet loss rate of less than 1 percent is usually acceptable.  A network

operating for a short time in a degraded mode with a higher loss rate is harmless, so long as the

probability is low that Pups will transit more than one net that is in this condition.  However, if a

network’s inherent error characteristics are unfavorable, the driver should take steps to improve its

performance, perhaps by incorporating a network-specific low-level acknowledgment and

retransmission protocol.

To date, there have been five major types of networks integrated into the Pup architecture,

each with a different level 0 driver.

Ethernet.  Local Ethernet facilities can very easily serve as transport mechanisms for Pups: a Pup

fits in an Ethernet packet with only a few additional words of encapsulation (see figure 2), and

requires no fragmentation.  These systems have good reliability, high speed, and can send broadcast

packets [Metcalfe & Boggs, 1976; Shoch & Hupp, 1979; Shoch, 1979b]. 
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MCA.  The Multiprocessor Communications Adapter (MCA), a parallel TDM bus, serves as a local

network tying together a limited number of Nova computers [Data General, 1971].  It has good

reliability and requires no fragmentation, but does not support broadcast packets.  Broadcasts are

accomplished by the brute-force method�sending a copy of a broadcast packet to each of the

possible hosts.

Arpanet.  To cover longer distances, Pups can be routed through the Arpanet; the format for

encapsulating a Pup in an Arpanet message is shown in figure 2.  (Note that Arpanet Pup transport

is based on Host-IMP protocol messages, not on Host-Host protocol streams.)  Because the standard

maximum Pup length is less than that of an Arpanet message, the driver itself need not fragment

Pups; however, the Arpanet does perform network-specific fragmentation internally: one ��message’’

containing a Pup may become multiple ��packets’’ within the Arpanet.  Furthermore, the Arpanet

provides increased reliability through the use of its own internal acknowledgment and retransmission

protocols.  The Arpanet does not presently support broadcast packets; rather than sending packets

to all possible Arpanet hosts, the network driver does not implement broadcasts at all.

Leased line store-and-forward network.  More frequently, different local networks are interconnected

over long distances through the use of a private store-and-forward network constructed using leased

telephone circuits.  Similar in spirit to the Arpanet, this system is used to connect internetwork

gateways.  Unlike the Arpanet, the system does not use separate packet switches (IMPs), but instead

switches packets through the hosts themselves�that is, the connected hosts include network-specific

drivers that implement a store-and-forward network.  This network has its own adaptive routing

procedure, independent of the internetwork routing.  The system is fairly reliable and does not

require low-level acknowledgments.  At present, the network drivers do not fragment Pups, but they

do promote small packets to the front of transmission queues at intermediate points to help improve

performance for interactive traffic.

Packet Radio network.  On an experimental basis, the ARPA Packet Radio network [Kahn et al.,

1978] has been used to carry traffic among local networks in the San Francisco Bay area.  The

Packet Radio network was integrated into the system by building a suitable level 0 network driver

[Shoch & Stewart, 1979].  The system provides good reliability; but due to the relatively small

maximum packet size (232 bytes), the driver must perform fragmentation and reassembly (see figure

2).  Though using a broadcast medium, the Packet Radio protocols do not support broadcast

packets.  In this case, the low-level driver includes a procedure to periodically identify Packet Radio

hosts that might be running Pup software; when asked to broadcast a packet, the driver sends

copies of it to all such hosts.

To date we have not used any public packet-switched networks, such as Telenet, as packet

transport mechanisms.  These systems usually provide only a virtual circuit interface (X.25) that

requires a user to pay for functionality that may not be needed.  Compared to our existing leased
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line network, a Telenet-based packet transport mechanism would not be cost-effective except under

conditions of very light traffic volume.  We would prefer to use a service that provided simple,

unreliable datagrams; if there were an appropriate interface, we could dismantle our leased line

store-and-forward network.

3.2. Level 1: internetwork datagrams

This is the level at which packet formats and internetwork addresses are standardized.  It is the

lowest level of process-to-process communication.

3.2.1. Pup format

The standard format for a Pup is shown in figure 3.  The following paragraphs highlight the

sorts of information required at the internet datagram level.

The Pup length is the number of 8-bit bytes in the Pup, including internetwork header (20

bytes), contents, and checksum (2 bytes).

The transport control field is used for two purposes: as a scratch area for use by gateways, and

as a way for source processes to tell the internet how to handle the packet.  (Other networks call

this the ��facilities’’ or ��options’’ field.)  The hop count subfield is incremented each time the packet

is forwarded by a gateway.  If this ever overflows, the packet is presumed to be travelling in a loop

and is discarded.  A trace bit is specified, for potential use in monitoring the path taken by a

packet.

The Pup type is assigned by the source process for interpretation by the destination process and

defines the format of the Pup contents.  The 256 possible types are divided into two groups.  Some

types are registered and have a single meaning across all protocols; Pups generated or interpreted

within the internet (e.g., by gateways) have types assigned in this space.  Interpretation of the

remaining unregistered types is strictly a matter of agreement between the source and destination

processes.

The Pup identifier is used by most protocols to hold a sequence number.  Its presence in the

internetwork header is to permit a response generated within the internet (e.g., error or trace

information) to identify the Pup that triggered it in a manner that does not depend on knowledge

of the higher-level protocols used by the end processes.

Pups contain two addresses: a source port and a destination port.  These hierarchical addresses

include an 8-bit network number, an 8-bit host number, and a 32-bit socket number.  Hosts are

expected to know their own host addresses, to discover their network numbers by locating a gateway

and asking for this information, and to assign socket numbers in some systematic way not legislated

by the internet protocol.
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There are some important conventions associated with the use of network addresses.  A

distinguished value of the network number field refers to ��this network’’ without identifying it.

Such a capability is necessary for host initialization (since most hosts have no permanent local

storage and consequently no a priori knowledge of the connected network number), and to permit

communication to take place within a degenerate internet consisting of an unidentified local network

with no gateways.  A distinguished value of the destination host address is used to request a

broadcast.  Certain values of the socket number field refer, by convention, to ��well-known sockets’’

associated with standard, widely-used services, as is done in the Arpanet.

The data field contains up to 532 data bytes.  The selection of a standard maximum packet

length must reflect many considerations: error rates, buffer requirements, and needs of specific

applications.  A reasonable value might range anywhere from 100 to 4000 bytes.  In practice, much

of the internet traffic consists of packets containing individual ��pages’’ of 512 bytes each, reflecting

the quantization of memory in most of our computers.  But just carrying the data is not enough,

since the packet should accommodate higher-level protocol overhead and some identifying

information as well.  Allowing 20 additional bytes for such purposes, we arrive at 532 bytes as the

maximum size of the data field (a somewhat unconventional value in that it is not a power of two).

Thus, there may be between 0 and 532 content bytes in a Pup, so its total length will range from 22

to 554 bytes.  Pups longer than 554 bytes are not prohibited and may be carried by some networks,

but no internetwork gateway is required to handle larger ones.  

The optional software checksum is used for complete end-to-end coverage�it is computed as

close to the source of the data and checked as close to the ultimate destination as is possible.  This

checksum protects a Pup when it isn’t covered by some network-specific technique, such as when it

is sitting in a gateway’s memory or passing through a parallel I/O path.  Most networks employ

some sort of error checking on the serial parts of the channel, but parallel data paths in the

interface and the I/O system often are not checked.

The checksum algorithm is intended to be straightforward to implement in software; it also

allows incremental updating so that intermediate agents which modify a packet (gateways updating

the hop count field, for example) can quickly update the checksum rather than recomputing it.  The

checksum may (but need not) be checked anywhere along a Pup’s route in order to monitor the

internet’s integrity.

3.2.2. Routing

Accompanying the packet format defined at level 1 are the protocols for internetwork routing.

Each host, whether or not it is a gateway, executes a routing procedure on every outgoing Pup, as

illustrated in figure 4.  This procedure decides, as a function of the Pup destination port field, upon

which directly-connected network the Pup is to be transmitted (if there is more than one choice), and

it yields an immediate destination host which is the address on that network of either the ultimate

destination or some gateway believed to be closer to the destination.  Each routing step employs the

same algorithm based on local routing information, and each Pup is routed independently.
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Routing information is maintained in a manner very similar to the Arpanet-style adaptive

procedures [McQuillan, 1974].  The initial metric used for selecting routes is the ��hop count’’�the

number of intermediate networks between source and destination.  The protocol for updating the

routing tables involves exchanging Pups with neighboring gateways and rests logically at level 2 of

the protocol hierarchy.  This is an example of a connectionless protocol which doesn’t require

perfectly reliable transmission for correct operation.  Changes in internetwork topology may cause

different gateways’ routing tables to become momentarily inconsistent, but the algorithm is stable in

that the routing tables rapidly converge to a consistent state and remain that way until another

change in topology occurs.

A host which is not a gateway still implements a portion of this level 2 routing update protocol:

it initially obtains an internetwork routing table from a gateway on its directly-connected network,

and it obtains updated information periodically.  If there is more than one gateway providing

connections to other networks, the host can merge their routing tables and thus be able to select the

best route for packets directed to any network.

3.3. Level 2: interprocess communication

Given the raw datagram facility provided at level 1, we can begin to build data transport

protocols, tailored to provide appropriate levels of reliability or functionality for real applications.  

These protocols generally fall into two categories: those in which a connection is established for

a sustained exchange of packets, and those in which individual packets are exchanged on a

connectionless basis.  Connection-style protocols usually transport data very reliably, and

transparently.

EFTP: the Easy File Transfer Protocol.  This is a very simple protocol for sending files.  Each data

Pup gives rise to an immediate acknowledgment, and there is at most one Pup outstanding at a

time.  This protocol is an indirect descendent of the one outlined in [Metcalfe & Boggs, 1976].  Its

simplicity makes this piece of communication mechanism easy to include under conditions of very

limited resources.  For example, we have implemented a complete EFTP receiver in 256 words of

assembly language, for use in a network-based bootstrap and down-line loading process.  

Rendezvous & Termination Protocol (RTP).  This is a general means to initiate, manage, and

terminate connections in a reliable fashion [Sunshine & Dalal, 1978].  In normal use, an RTP user

initiates a connection by communicating with a well-known socket at some server.  That server will

spawn a new port to actually provide the service, and the RTP will establish contact with this port.

It employs a non-reusable connection identifier to distinguish among multiple instantiations of the

same connection and to cope with delayed packets without making assumptions about maximum

packet lifetimes.  RTP also synchronizes Pup identifiers for use in managing the connection.
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Byte Stream Protocol (BSP).  This is a relatively sophisticated protocol for supporting reliable,

sequenced streams of data.  It provides for multiple outstanding packets from the source, and uses a

moving window flow control procedure.  User processes can place mark bytes in the stream to

identify logical boundaries and can send out-of-band interrupt signals.  RTP and BSP combined

perform a function similar to that of the TCP, with which they share a certain degree of common

ancestry [Cerf & Kahn, 1974; Postel, 1980].

Connectionless protocols do not attempt to maintain any long-term state; they usually don’t

guarantee reliability, but leave it up to the designer to construct the most suitable system.  Their

simplicity and ease of implementation make them extremely useful.

Echo.  A very simple protocol can be used to send test Pups to an echo server process, which will

check them and send back a reply.  Such servers are usually embedded in gateways and other server

hosts, to aid in network monitoring and maintenance.  The server is trivial to implement on top of

the level 1 facilities.

Name lookup.  Another server provides the mapping from string names of resources to internetwork

addresses; this is accomplished by a single exchange of packets.  This service is often addressed with

a broadcast Pup, since it is used as the first step in locating resources.  (The name lookup service

itself, of course, must be located at a well-known address.  To be useful, it must be widely

available; therefore it is typically replicated at least once per network.)

Routing table maintenance.  The internetwork routing tables are maintained by Pups exchanged

periodically among internetwork gateways and broadcast for use by other hosts.

Page-level file access.  The Woodstock File Server (WFS), one of the family of file servers available

on the internet, provides page-at-a-time access to a large file store [Swinehart et al., 1979].  The

protocols used for this do not require establishment of a connection, but merely exchange request

and response Pups that each carry both commands and file data.  This arrangement supports

random-access, transaction-oriented interactions of very high performance�frequently better than

that obtained using local file storage, because the file server’s disks are much faster than those

typically connected to personal computers. 

Gateway monitoring and control.  There is no single network control center, but individual gateways

may be queried from a monitoring program run on any user machine.  With suitable authentication,

the user may assume remote control of the gateway so as to perform operations such as changing

parameters and loading new versions of the software.

Other connectionless protocols are used to access a date and time server, an authentication

server, and a mail check server integrated with an on-line message system.  These protocols are

designed to be as cheap as possible to implement (i.e., without connection overhead) so that such
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servers may be replicated extensively and accessed routinely without consuming excessive resources.

For example, instances of some of these servers are present in all gateway hosts so as to maximize

their availability.

3.4. Level 3: application protocols

Armed with a reasonable collection of data transport protocols at level 2, one can begin to

evolve specific applications at level 3.  These are supported by various function-oriented protocols

[Crocker et al., 1972].

Telnet.  Terminal access to remote hosts is provided with an internetwork Telnet protocol, which

makes use of the combination of the Rendezvous & Termination Protocol (RTP) and the Byte

Stream Protocol (BSP) at level 2.  Using the notion of a virtual terminal, Telnet implementations

map characteristics of actual terminals into a network-independent representation; a mark byte in

the stream and an out-of-band interrupt, for example, are used to signal an ��attention.’’  (This

approach is a subset of the Arpanet Telnet protocol, without any of its options such as RCTE

[Davidson, et al., 1977; Feinler & Postel, 1978].)

FTP.  The RTP and BSP are again combined as the foundation for an internetwork File Transfer

Protocol (FTP), supporting stream-oriented access to files.  The underlying byte streams provide

reliable communication, and the major task of FTP is to communicate commands and responses and

to sort out different representations of data in different file systems.  FTP implementations have

been embedded within existing time-sharing systems, and also constitute the core of dedicated, high-

capacity file servers.

Printing.  Among the important shared resources in the internet are high-quality printing servers.

Rather than using the fully developed BSP and FTP, the specialized task of sending unnamed,

standard format document files to a printer makes use of the more restricted but much simpler

EFTP.

CopyDisk.  Given high-performance networks and simple gateways that can forward Pups among

them efficiently, it is perfectly reasonable to copy entire disk packs through the internet.  The

CopyDisk protocol negotiates between the participating machines to ensure that the disks are

compatible, and handles error recovery should something break down.

Remote graphics.  Personal display-oriented computers such as the Alto can be used to provide a

convivial front end for large programming systems such as Interlisp.  The Alto Display protocol is

used for exchanging descriptions of graphical structures as well as text; it is similar to the ARPA

Network Graphics Protocol, but with extensions to support raster-scanned graphics [Sproull &

Thomas, 1974; Teitelman, 1977; Sproull & Cohen, 1978].
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Additional applications have included cooperative editing of common documents from multiple

machines, audio communication and packet voice, and many others.  

As users create new applications, these systems tend to develop their own natural layering of

function.  Some may require new protocol designs in the existing hierarchy; the Pup architecture

permits this degree of flexibility down to the level of the simple internetwork datagram.  As we gain

experience with new systems, common pieces of design will begin to emerge that might be of more

general use; they will eventually find their way into an appropriate place in this hierarchy of

communications protocols.
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4.  Evolution, actual experience, and performance

The Pup architecture emerged against a background of Arpanet protocols.  Many of its

important ideas�and those of its key relative, TCP�first appeared during the course of a series of

meetings of the International Network Working Group (IFIP TC-6 WG6.1) during 1973.  Pup and

TCP share a number of important principles, most notably that of reliable end-to-end transmission

through an internet.  Pup subsequently diverged from TCP as the desire for implementation within

Xerox required decoupling it from TCP’s long and sometimes painful standardization process.

The fundamentals of the Pup design crystallized in 1974 and have remained essentially

unchanged since then.  During this interval many higher-level protocols have been developed, the

implementations have evolved considerably, and the internetwork system has grown to include

approximately 1000 hosts, attached to 25 networks of 5 different types, using 20 internetwork

gateways.  The system is in regular use, is quite stable, and requires little regular maintenance or

attention.

From a functional point of view, this internetwork architecture has been able to fulfill the

needs of a very diverse community.  While the bulk of all traffic is carried by means of a few

standard protocols, it has proven extremely valuable to be able to define new protocols�aiming at

different points in the space of performance, cost, and functionality�and to fit them into the

internet protocol hierarchy at any of several levels.

In terms of performance, the internetwork gateways impose very little overhead because they

are so simple.  In regions of the internet where multiple high-bandwidth local networks are

interconnected directly by a single minicomputer-based gateway, there is almost no noticeable

difference between intranet and internet performance.  Total throughput in an individual gateway is

high, ranging from 400 to 1000 kilobits per seconds (depending on the particular implementation),

and the typical delay experienced by maximum-length Pups in the case just mentioned is 2 to 5

milliseconds.

These figures don’t represent limits to what is achievable�even with the relatively low-powered

machines now being used as gateways�because the gateway software has not been highly tuned for

this application but rather is based on general-purpose software packages that are also used in many

other hosts.  But the current performance is adequate because the internetwork traffic load is

typically only a tiny fraction of the capacity of the underlying local network channels.  There exists

one Alto-based gateway that interconnects three 3-megabit per second Ethernet channels as well as

several 9.6-kilobit per second leased lines and a Packet Radio interface.  In general the bottlenecks

are not the gateways but rather the slower communication channels; discard of Pups due to

congestion in gateways is almost exclusively due to overload of the 9.6-kilobit per second lines.

As might be expected, most of the traffic in our local networks is intranetwork�that is,

consisting of Pups whose source and destination are on the same network.  For example,

measurement of one such network has shown a typical volume of 2.2 million packets per day, 72

percent of which are intranetwork packets [Shoch & Hupp, 1979].  Furthermore, of the remaining
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28 percent, more than half consist of traffic to or from another nearby local network connected via

a single gateway.  (This site is served by multiple local networks because it is too large to cover with

a single one using existing Ethernet technology, and also because it would exhaust a single

network’s address space.)  The rest of the traffic�some 250,000 packets per day�is transported to

or from other campuses in the internet, mostly via the leased line network.

The higher-level protocols, such as the Byte Stream and FTP, are generally limited in

performance by the processor capacity or the secondary storage bandwidth at the source and

destination.  For example, our BCPL implementation of BSP can maintain a data stream at the rate

of about 500 kilobits per second between end processes running on Alto minicomputers, at which

point both machines are CPU-bound.  While it is certainly adequate for most applications, we find

this performance somewhat disappointing, and we view it as an indication that BSP�though

substantially simpler than, say, TCP�is still too complicated a protocol for high-performance

communication.

The Pup architecture allows individual networks to be added to the internet system on an ad

hoc basis, with no need for central control or coordination except to assign new network numbers.

Users sharing a local network can assemble gateways and lease lines to other nearby gateways; they

are encouraged to make multiple intergateway connections to provide alternate routes and thereby

reduce the probability of being isolated.  The gateway software has evolved to the point where if

one starts a copy of it on a host having at least one connection to the existing internet, it will

automatically obtain the files and other information it needs, announce its availability to the rest of

the internet, and begin forwarding Pups.

5.  A retrospective critique, possible improvements, and future research

While the architecture works extremely well, there are some lessons to be learned from this

experience.

5.1. Addressing and routing

The size of address fields is a question of continuing controversy.  An eight-bit network

number supports up to 256 nets; that is fine for now, but eventually it should be made larger.  To

date, 256 hosts per net has not been a problem, though it is likely to become one (for example,

when the Arpanet’s new 24-bit addressing convention starts to receive wide use).  We have avoided

variable-length address fields in the Pup design because they increase per-packet processing costs.

If an internetwork system becomes extremely large, the number of networks becomes so great

that it is no longer practical for all hosts to keep routing table entries for all possible destination

networks.  Area routing strategies may be employed to attack this problem [McQuillan, 1974].

Alternatively, one may adopt a scheme in which the local routing table becomes a cache of recently
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used routing information, with routes to specific networks computed and maintained as needed.

The problem of locating routes to distant parts of the internet is an area of current research.

One could consider revising the entire notion of a hierarchical address space.  Under the

current design, it is sometimes necessary to change the host number of a machine which is moved

from one net to another�an operational annoyance.  It is conceivable that every host could be

given a unique address within a flat address space; a more sophisticated mechanism would then be

needed to map addresses into routes, since there would no longer be a network number as part of

the address (except perhaps as a hint, to improve performance).

We view with some disfavor non-hierarchical organizations in which internet addresses consist

of a concatenation of network-specific addresses [Sunshine, 1977b].  Such arrangements have the

effect of fixing the path to a given destination and blur the distinction between addressing and

routing.

Socket numbers, which are now 32 bits wide, could easily shrink to 16.  Originally, 32 bits were

assigned to allow inclusion of a unique subfield to distinguish among multiple instantiations of a

connection; we now recognize that a better approach is to use a distinct connection identifier at the

time a connection is established, as mentioned earlier in the presentation of the Rendezvous &

Termination Protocol.

Using hop counts as the metric for routing decisions has worked remarkably well.  An obvious

drawback, however, is that it considers a hop through a 9.6-kilobit per second phone line equally as

good as a hop through a 3-megabit per second Ethernet link.  As the topology becomes more richly

connected, this will increasingly become a problem.  We intend eventually to change the routing

algorithms to reflect some consideration of bandwidth and delay, using known techniques based on

research into adaptive distributed routing algorithms in the Arpanet and elsewhere.

We have given little consideration to source routing or other forms of advice (e.g., class of

service) provided to the internet routing procedures by source processes.  In providing such

facilities, one must take great care not to compromise the simplicity of the basic internet datagrams

or violate the layering of protocols.

5.2. Congestion control and utilization of low-bandwidth channels

The current congestion control techniques must be regarded as primitive.  Discarding Pups and

(where possible) notifying the source process when congestion occurs has the virtue of simplicity,

and we believe it is a good general approach; but the present design has several defects.

Insufficient information is returned to the source process to enable it to make an informed decision

about how to proceed; further, the discard of Pups is haphazard, and no provision is made for

fairness.  Congestion occurs most often at the entry to slow channels, and under overload conditions

the perceived performance of paths through those channels is highly variable.
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This is a situation in which it would be appropriate to perform a relatively large amount of

computation per packet in order to optimize the utilization of the communication bandwidth.  For

example, the network-specific driver for a leased telephone circuit could examine the source and

destination addresses of Pups to deduce the existence of ��conversations’’, and use this information

to share the slow channel more effectively.  (The Arpanet IMPs deduce conversations in precisely

this way, though for purposes having to do primarily with flow control rather than congestion

control.)

In the same vein, techniques such as code compression, elimination and regeneration of

identical internet headers in successive packets, etc., may be implemented in the network-specific

drivers for the slow channels, with minimal impact on the end-to-end protocols.  Such techniques

are used widely in virtual circuit designs, and their applicability is sometimes cited as an advantage

of virtual circuits over datagrams [Roberts, 1978].  But there is no reason they can’t be employed in

a datagram-based internet, so long as the necessary additional computation is done in the right

place.

The important point is that optimizing the utilization of the communication channel is

appropriate only when the channel bandwidth is scarce compared to the computation required to

perform such optimization.  Where the processing capacity of the end machines is itself the scarce

resource�as we have observed in the local network environment�such techniques are highly

inappropriate.

5.3. Pup types in the internet header

The distinction between registered and unregistered Pup types at the level of internet datagrams

has not turned out to be particularly useful, except in a few cases: Pups of type ��error’’ and ��trace’’

may be generated from within the internet without knowledge of the higher-level protocols being

employed by the end processes.

5.4. Performance of reliable end-to-end protocols

Present implementations of the Byte Stream Protocol include fairly sophisticated adaptive flow

control heuristics that also try to take note of any packets lost due to internet congestion.  This

approach has worked reasonably well in enabling a source to adapt to the conditions encountered

along the path to a particular destination.  However, use of networks with highly variable

behavior�such as the wide-ranging delays experienced when using the Packet Radio network�can

confound these heuristics.  Under unusual circumstances, the flow control procedures have been

observed to move suddenly into very unfavorable operating regions.  The difficulty involving the

Radionet has since been solved, but the general design of simple, effective flow control and

congestion control procedures is just a very hard problem�particularly procedures intended to

adapt dynamically to and make good use of different networks whose performance may vary by
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nearly three orders of magnitude.

The step from raw Pups to a byte stream may be too large.  The Byte Stream Protocol does too

much for many applications; it is complex enough that few systems have ever implemented the

entire specification.  As discussed previously, performance of the BSP�when compared to some

other systems�is reasonable; but it does not give a user the full capacity of the underlying

networks.  In a high-bandwidth local network environment, paying attention to per-packet

processing overhead is of extreme importance.

We have considered�but have not yet implemented�a proposal for an intermediate level of

functionality: a Reliable Packet Protocol (RPP) that takes care of connection establishment and

processes flow control information, but tries not to dictate how a client program should do buffer

management.  It ensures reliable delivery (i.e., each packet once and only once), but may deliver

packets to the client out of order, and does not deliberately attempt to hide packet boundaries.  A

BSP connection�where that is what is desired�may then be re-implemented as a veneer on top of

an RPP connection.

5.5. Access to the internet

The present Pup architecture can be characterized as ��open’’: users and applications are

permitted�and indeed encouraged�to take advantage of the internet for routine communication.

Access to the internet is uncontrolled; as in many network designs, responsibility for access control

rests with the host systems, and whatever accounting is performed is for the services rendered by

individual servers.  In our research and development environment this is ideal, but obviously in

some other environments it might not be.

5.6. Conclusions

The success of Pup as an internetwork architecture depends on a number of important

principles.  Key among these is the layering of function in such a way that applications may make

use of the internet at any of several levels, with the ability to choose among alternative protocols at

each level or to develop new ones where necessary.  Simple internetwork datagrams constitute the

level at which media independence (through encapsulation) is achieved; they are also the unit of

direct process-to-process communication.  This is crucial both to flexibility and to performance,

particularly in an internetwork environment dominated by relatively lightweight hosts and high-

bandwidth local networks.

During 1976 the Pup internet reached a level of functionality roughly equivalent to that

provided by the standard Arpanet protocols�byte streams, Telnet, and FTP.  From that time to the

present we have concentrated on building servers and constructing applications to access them

through the internet.  We are just beginning to explore that area of interprocess communication

traditionally considered the domain of multiprocessors.  Some interesting opportunities arise from
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the availability of 100 or so minicomputers interconnected by a 3-megabit per second broadcast

channel, and by 10 or so similar clusters, all interconnected by a store-and-forward network.  We

believe that the Pup architecture serves as a good foundation for such investigations.
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