| nter-Office Memorandum

To Communications Protocols Date December 20, 1978
From David Boggs Location Palo Alto
Subject TeleSwat Protocol Organization Parc

XEROX

Filed on: [Maxcl]<Pup>TeleSwat.bravo

There may not be a debugger in Peoria, but there is a debugger in Palo Alto and a way to move
packets between Palo Alto and Peoria.

This memo documents the protocol by which Swat communicates with aremote Swatee. | maintain
alot of software which is used at other Xerox sites, and | often get calls from users when a program
landsin Swat. The caller israrely facile with Swat’s command language, and it is very difficult to
guide him through the steps necessary to gather debugging information (assuming for the moment
that he has the symbol file on hisdisk). Many programs are also available as boot files, for which
the only debugger available until now was SSD: a super simple octal debugger. The need for a
cross-net debugger has been clear for along time. Pup gateways have a rudimentary debugger
server in them, but the effort required to build the remote user has prevented development, and it
has remained only atoy. Bolt Beranek and Newman has developed several cross-net debuggers. |
know of two: one for debugging ArpaNet Imps and one for debugging PDP-11 BCPL programs.

There are many ways to do remote debuggers. A useful way to classify them isto ask where the
logic of the debugger runs: in the machine being debugged or in the machine where the human
debugger is. | considered putting a Telnet server into Swat, and using Chat to control the remote
Swat. Swat’s keyboard and display stream would then be paralleled with the Telnet streams. The
advantages of this approach are that it would use existing software, and Swat could then accept
commands from either the remote Chat or the local keyboard, allowing joint debugging by the guy
with the broken machine and the remote guru. The disadvantage isthat it takes alot of code to
implement a Telnet server and Swat, like all Alto programs, is short on space. A server built on the
standard Pup package would consume about 6K. Building a Telnet server from scratch istoo much
work. That eliminated this approach.

The interface between a debugger and a debugee is usually quite simple, and the other approach
where the debugger runs in the remote machine with just a small nub in the debugee looked
promising. The debugger must be able to fetch and store memory locations in the debugee, and tell
it to stop and go. In addition there must be conventions for saving and restoring the debugee’s
state, and interrupting (manually and by breakpoints) and resuming. Since thereis not always
network software present in our machines and because of our dislike of omnipotent operating
systems, it is not possible to force a remote machine into the debugger without its consent, so that
eliminates the stop command. This approach greatly reduces the amount of mechanism in the
remote machine - it is possible to write a server which implements Fetch, Store and Go in afew
hundred instructions. The prospect of including such a debug nub in boot files and then being able
to symbolically debug them with Swat convinced me that this was the way to go.

How Swat does it

Copyright Xerox Corporation 1979

TeleSwat Protocol

Swat contains avery simple Pup Level O Ethernet driver, aLevel 1 Raw Pup dispatcher, and a
Level 2 TeleSwat User and Server. The *Z command specifies the address space which Swat peers
into: any bank of memory, or any file created by OutLd (usually, of course, thisis Swatee), or any
host in the internet, in which case Swat becomes a TeleSwat user and the remote host is assumed to
implement the server half of this protocol.

The $$"Y command makes Swat a TeleSwat server: it then ignores the keyboard and answers Fetch,
Store and Go packets from the net. If the target address space is set to Swatee using the *Z
command before making it a server, then things work as you would expect, except remotely. If the
server’ s target address space is set to bank 0, the user Swat will be examining the server Swat’s
running core image (in principle the server’ s target address space could even be another host...).
Servers other than Swat are not expected to be this fancy; the address space which the server
references on behalf of the user is outside of this protocol.

The TeleSwat user is where the debugger logic is running and most of the Swat in the server is not
being used. A boot file, which usually doesn’t hook up to the local disk and therefore can’t call
Swat, can contain atiny debug nub which implements the server half of the TeleSwat protocol and
which gets control when the program triesto call Swat. In this case Fetch and Store requests go to
the running core image.

The Protocol

The protocol is designed to minimize work for the server, placing the burden on the user. The

server is completely passive: it only does something in response to a command from a TeleSwat
user, and the only packetsit generates are acknowledgements. Duplicate suppression, retransmission
of lost packets, etc isthe responsibility of the user. The protocol is connectionless: except for the
Go command, the server is not required to maintain any state from one packet to the next.

There are three commands and five packet types. The user should employ the Pup ID as a packet
sequence number for duplicate suppression. To respond to arequest, the server need only set the
typeto’ack’, exchange the source and destination ports, append the requested information if any,
and send the Pup back to its physical source (note that the server doesn’t have to worry about
routing).

In Fetch and Store commands, the user may optionally request that the server send back a block of
words surrounding the word being fetched or stored. The server may ignore this and only send
back the requested word, but if it complies, the user can then implement a cache and reduce the
number of packetsit generates. When the machines are directly connected via an Ethernet, the
cache doesn’t buy much, but when they are separated by a 9.6 KB hop, it winsbig. | have
experimentally determined that the optimum block sizeis about 16 or 32 words; Swat asks for 32
word blocks. The size of the surrounding block of memory requested by the user can be any power
of two up to 256; the server may choose to send a block of a different size (for example: the server
may have asmall packet buffer which can hold ablock of up to 32 words; if the user requests a
256 word block the server may respond with a 32 word block). The base address of ablock isthe
address of the fetch or store command which the ack packet is acknowledging ANDed with the
negative block sizeintheack packet .

The Go command involves a 3-way hand-shake to protect against lost acknowledgements. The
problem is similar to closing a connection. The user says Go; if the packet islost, no ack comes
back and the user retransmits. If the ack islost, the user also retransmits since he can't distinguish
this from having the Go command clobbered. If the server resumes the Swatee as soon as it
receives a Go, but its ack islost, the user will be unsure of whether the server heard it, since the
server has stopped listening and isn’t around to retransmit acks. So when the server receives a Go
command, it acknowledges it and then dallies for up to 10 seconds, so that it can retransmit alost
ack. When the user getsthe ack, it sends a GoReply packet (the third packet in the hand-shake
sequence). If the server gets this and the previous packet was a Go, it stops dallying and resumes
the Swatee. If it getsany other command, it abandons the Go command. If the GoReply
command is lost, the server dallies for 10 seconds and then resumes the Swatee. The Pup ID of a

TeleSwat Protocol

GoReply packet should be one greater than the previous Go packet.
Details

All numbers are octal. The well known TeleSwat server socket is 60. For this description (and
historical reasons) the data words and bytesin a Pup are numbered from one, not zero.

Sore (user to server)

Pup Type: 200

Pup ID: arbitrary (server sends it back in the ack)

Pup Contents: the first data word of the packet contains the address of the word to be
stored into. The second dataword is the value to store. If the third data word is non-zero,
then the user is requesting the server to send a block of that many words surrounding the
address specified inword 1. The block should reflect the result of the store.

Ack: Thefirst dataword of the ack is the address of aword in the debugee. The second
dataword isignored. If the third word is non-zero, then ablock of that many words of the
debugee begins in the fourth dataword. The base address of the block is (word 1) AND -
(word 3). Note that the server doesn’t have to send a block, and may chooseto send a
block of adifferent size, usually smaller.

Fetch (user to server)

Pup Type: 201

Pup ID: arbitrary (server sends it back in the ack)

Pup Contents: the first data word is the address to fetch. The second data word is ignored.
If the third data word is non-zero, it is arequest for a block of that many words asin the
Store command.

Ack: Thefirst dataword is the requested address. The second data word is the contents of

that address. If the third data word is non-zero, then the interpretation is as for the Store
command.

Go (user to server)
Pup Type 202
Pup ID: arbitrary (server sendsit back in the ack)
Pup Contents. none
Ack: no contents
GoReply (user to server)
Pup Type: 203

Pup ID: the ID of aprevious Go command plus one
Pup Contents: none

Not acknowledged
Acknowledgement (server to user)
Pup Type: 204

Pup ID: same as corresponding request
Pup Contents: See descriptions above.

TeleSwat Protocol

Caution : the length of the data portion of a Fetch or Store packet can be aslittle as 2 (fetch) or 4
(store) bytes, in which case word 3 (block length) is meaningless. Similarly for acks: if thelengthis
less than 6 bytes, no block follows.

Revision History
December 11, 1978: first release.

December 20, 1978: the second data word in a Store ack is unspecified.

