
SIL-A SIMPLE ILLUSTRATOR FOR CAD 477

4.7 SIL-A SIMPLEILLUSTRATOR FOR CAD

Charles P. Thacker

This section describes SIL, a Simple Ilustrator implemented on a minicomputer equipped with a
raster-scanned display. SIL was originally built to produce high-quality logic diagrams for digital
systems, as well as other specialized illustrations. Although it has a number of limitations, SIL has
been applied to a wider variety of applications than originally anticipated.

Rather than simply being used to produce documentation, SIL is now used to generate input for a
group of programs that aid in the implementation of digital hardware. The logic diagrams produced by
SIL are the only input required by these programs; the SIL files are interpreted to provide the
information required by the rest of the design system. SIL has also been used for a wide variety of
general-purpose illustration tasks.

Section 4.7.1 discusses the hardware environment in which SIL wa:s built and the main objectives of
the program. Section 4.7.2 describes the user interface and editing functions provided by SIL, and Sec.
4.7.3 provides an overview of the implementation. In Sec. 4.7.4, the major applications of SIL are
described.

4.7.1 Environment and Characteristics

The primary goal in the design of SIL was to replace manual drafting in the preparation of hardware
logic diagrams. The intended user community consisted of approximately 20 engineers and scientists
engaged in the design of experimental digital hardware at the Xerox Palo Alto Research Center.

SIL was designed to run on the Alto (Fig. I), a personal computer described in detail in Ref. 22. The
Alto is a small machine with 64K 16-bit words of main storage, and a microprogrammed CPU capable
of executing a typical register load or add instruction in approximately 2 µs. Local storage on the Alto
is provided by a 2.5-Mbyte cartridge disk drive.

The principal output device of the Alto is an 875-line monochrome television monitor, oriented with
the long dimension of the tube vertical. The monitor shows a bilevel black-and-white image 600 pixels
wide by 800 pixels high, refreshed at 30 Hz. The image is represented in an integral frame buffer that

478 COMPUTER GRAPHICS

consumes slightly less than half of the Alto's main storage. The display hardware also supports a
cursor, which is a 16 by 16 pixel bit map taken from a fixed area in memory. The cursor position can
be set by a program, and the contents of the bit map are merged with the normal video at the
indicated position. This implementation allows the contents and position of a small area of the screen
to be ORed with the bit map rapidly without changing the contents of the main frame buffer.

Input is provided by a keyboard and a mouse, a pointing device that provides relative position
information when rolled over a surface. In most Alto applications, including SIL, the mouse
coordinates are clipped so that they lie with.in the boundaries of the display and are then used as the
coordinates of the display cursor. The mouse also provides three buttons that allow the user to supply
a small amount of information to a program without the necessity of moving his or her hand from the
mouse to the keyboard.

A number of Altos are interconnected by an Ethernet network [14]. a 3-Mbit/ s packet-switched
network that also provides access to remote file storage and printing services. The printer used for SIL

output is a raster-scanned xerographic unit with a resolution of 384 lines/ in., which produces 8.5 by
l l in. sheets.

Because of the characteristics of the printer, the contents of the SIL display correspond to a single
hardcopy page. There are no provisions in SIL for using the display as a window onto a larger
document, a feature often found in graphics systems. For applications involving figures for reports

Fig. I Alto personal computer display, keyboard and mouse.

SIL-A SIMPLE ILLUSTRATOR FOR CAD 479

and the like, this is not a limitation, since the normal format for these documents is an 8.5 by 11 in.
page. Initially, there was concern that this format would be inconvenient for logic diagrams, since
these diagrams are customarily prepared on 11 by 17 or 17 by 22 in. sheets. Experience has shown that
this is not a problem, since a single page will usually contain a complete subsection of a design and fits
conveniently in standard notebooks. A printed-circuit board containing 150 medium-scale integrated
circuits, for example, can be shown in 15 to 20 SIL pages.

Objects. At its lowest level, SIL manipulates only two types of objects, rectangles and text strings.
Rectangles are used for horizontal and vertical lines and for backgrounds, which are large areas that
may be overlaid with other objects and printed in color on printers with color capability. Text strings
may be specified in one of a number of fonts (typefaces) and may also be displayed in boldface or
italic.

Su

2 LoadAd

__,Ed=eC=lo.,.ck~-1~_,2-; b8a
clkAd'

600

AdvancePipe 4 V.
-==..,__...,s._b8b

600
_.e'---d=k~MC=2' _ _!:dgeClock-1 •

b8c 8 9lkCycre1' GoC:le1 9E)
,E.,.d=lac0ck=.,.·1-.a10. SlO..,._ _ _.==~-

PUT!
b8d ...,, ... , _ _,_,Ed,.a,.,ee.,1oc=•·,.b _ 12v.

,E,,dg.,eC"'l"'oc.,k-_.1 _ _..13.__ 600

ui[)---,,;.Newl,;;,,:.,.n•,;.t ---,•HE) ~~~.&t=--~~~'-_,---,s~c3b _.e'-_ _,c~lkOO=~:P'­
-=-=='-'---'3-t ·. S10

""G"'oCyc"""~le0=-'---"•5"i~
600
.s'--'g"'k"'cy"'c""1e0"-·"-a-

. EdoeClock-1 _ U,

..,:,.::=,,.:,,,k"--''--''-':-IE) 600_,e'---'c"'lk"'CV..,c,,.1e0,.·,.b _

~ ~'~'--'~=R~='°~ck~·c~
PU:; 12 E)

_.E.,d.,.,..IOoack"'-1.__1 .. ay. 600

js~u:,'..i:.~~a;:· ::::j4t:J
__,E_,d,_e,,Ca,to,.ck'-'·2~_,~._.d9b

TComl

RComin' b3b l'5"---~
-"'"""""'---"-<OI 600

Goe Ie0
Ed eClock-2

O cle1
MemlnstFw.1'
Ed eClock-2

cleO'
Ed eClock-2

10
1~ d7C

clkSAL F'

clkXC le1'

S10

clkH3P'

clkWA'

8 clkMIR'c

S10

PUTh 1 E) _.3._ _ __.E.,.dgeC"""lock=_..·a_
_,Eaed,.,9ee.,,..1oc,.k,,-2,___,2-l c7a SlO

TWrileStrgbe'

RWrite 13
RPWrile trobe'

RWriteStrobe'

m CycleOFeed' ~
;:; a19a 3 Cyc~ B Cyc'8()'

soo ~S00

RamClock

PUa •E>. 9b .,e,._ _ ___,Ra,..me=,oc1c=--
OIJ RamClockFeed' 5 81 SlO

8 clkH2'

10

Fig. 2 Typical SIL logic diagram.

480 COMPU1ER GRAPHICS

SIL also provides display macros, which allow an arbitrary collection of objects, including other
macros, to be packaged together and subsequently referred to as a single character in one of five macro
fonts.

Using only these primitives, a surprising range of illustrations may be created. For the logic drawing
application, a font was designed -that contains about 50 characters corresponding to the symbols on a
logic designer's drafting template, and from this symbol set, several hundred display macros represent­
ing digital integrated circuits have been constructed. These macros are distributed as library files, and
are used by all designers. Figure 2 shows a typical logic drawing produced with SIL using some of
these macros.

One of the major apparent drawbacks of SIL is its inability to produce lines of arbitrary orientation.
This disadvantage has been partially overcome by providing a font with characters consisting of line
segments at various angles, and arcs of circles of various sizes. Using an operation that allows text to
be placed at an arbitrary location with high precision, it is possible to produce complex figures using
this font (see Fig. 3).

~4 l Log;c
Diagrams

Component Library:

[§§E])
Fonts:

§~

i Ccmponent doct,onanes

t ~TTLd,ct ana 0
(Analyze) ~=====:::;""' t l(sc""- 0

Node .l_ Error
L1St T Messages

§§

\(All files for a single board:

Used to
merge
files

C==:) =Program

a =File

i:EJ? = Library File

~~
E!~~,.,;~

Error
Messages Wire list

§§
t

~Stirchwelder
~ Control i P,og,am

Wired
Board

Din~cl transmisson
to printer via
Ethernet

Fig. 3 SIL CAD system flow. This illustration uses a "template" font to achieve slanted lines.

SIL-A SIMPLE ILLUSTRATOR FOR CAD 481

SIL fonts are provided in two resolutions, a 75-pixeJ/in. version used with SIL itself, and a
higher-resolution version suitable for the printer used for hardcopy output. SIL files contain the screen
coordinates of the objects to be displayed, which are scaled appropriately for the particular printer
used. The final output is thus a faithful rendition of the displayed image, but at high resolution. This
makes the output much more readable than simply scaling the bit map to the resolution of the printer.

4.7.2 User Interface and Functions

The choice of a user interface is perhaps the most difficult part of the design of an interactive system,
for once the functions the system is to provide have been selected, the user interface determines
whether these functions can be accessed easily and naturally. The SIL user interface was designed with
several primary ideas in mind:

I. The user should be able to develop a simple (although not necessarily correct) model of the
operation of the program, and should be able to rapidly predict the result of a command, so that an
appropriate operation can be selected easily.

2. The rate of interaction with the user should be high. Thus SIL commands are usually specified by
a single keystroke or mouse button depression. This was done at the expense of a more easily learned
command structure such as menu selection, since it was judged that speed of operation was more
important than ease of learning. The office typewriter provided a precedent for this decision.

3. The amount of context that the user is required to remember should be small. The effects of a
command should not depend on "modes" previously set by the user.

4. The user should not have to request status information from the program. Any status information
required should be continually displayed, and the amount of such status should be minimal.

In this section, the functions provided by SIL and the commands used to evoke these functions are
discussed. Also, the status display, which provides the user with information about the current state of
SIL, is described.

Status Display. When SIL is started, the display screen is cleared with the exception of a single line
of text, the status line, and three special indicators, the cursor, the mark, and the origin. Figure 4
shows the initial SIL screen. The cursor, the mark, and the origin serve to identify special locations on
the screen. The cursor is a small arrow, displayed with the Alto's display cursor. Its position on the
screen is changed by rolling the mouse over the work surface. The mark and the origin are short
horizontal and vertical bars, respectively. They provide reference points for the commands described
later, and are positioned using the mouse. To emphasize their positions, they blink approximately
twice per second.

The status line displays the current values of a number of internal parameters, some of which may
be changed by the user. It is updated by SIL whenever any of these quantities change. The significance
of the entries in the status line shown in Fig. 4 is as follows:

GLFM: 4210 TFON Space: 10244 Selections: OX: 124 Y: 200

"" The Status Line

/The Mark

I / The Origin

/ The Cursor

' Fig. 4 Initial SIL screen.

482 COMPU1ER GRAPHICS

GLMF: 4210b
G(4) is the current grid. The cursor and all objects added to the display will be constrained to start

on points that are multiples of the grid spacing. The grid may be set by the user to any power-of-2
screen units (l, 2, 4, ...). Use of a grid to constrain the placement of objects allows collections of
objects with repetitive structure to be drawn easily.

L(2) is the current line width. The line width may be set by the user to any value between l and 9
screen units, and affects the width of any lines added to the display.

M(l) is the current magnification. SIL provides a facility (described later) to "zoom" a subsection of
an image to allow precise placement of objects.

F(0b) is the current font. Any text characters added to the image will be displayed in this font. Four
text fonts, one user macro font, and five library macro fonts are available. Boldface (b) and italic (i)
attributes may be specified for text fonts. The correspondence between SIL font numbers and font file
names is made by a group of entries in a user profile file. SIL and other applications programs read this
file to obtain information user-specific parameters.

TFON The first three of these indicators display internal state information that is usually useful only
to SIL maintainers rather than to users. The fourth indicates the current color, Neutral (black) in this
case. Any objects added to the picture will be printed in this color on printers with color capability.

Space: 10244 This entry indicates the number of unused words remaining in the storage pool for
objects (i.e., how many more objects may be added to the display). A rectangle requires five words of
storage; a string requires five words plus one word for every two characters in the string.

Selections: 0 This entry indicates the number of selected objects. Selection is a central idea in SIL, as
most commands apply only to selected objects.

X: 124 Y: 200 These entries give the current coordinates of the mark. If a mouse button is depressed
while the mouse is moved, the coordinates reported are those of the cursor. This facility allows the
screen coordinates of objects to be determined rapidly by holding down a mouse button and pointing
to the object.

In addition to the information above, the status line is used to display text used to prompt the user
and to echo user input for some commands. For example, the names of input and output files are
supplied by the user in this way.

Commands. The user provides commands to SIL using the keyboard and the mouse buttons.
Keyboard commands are single control characters, generated by depressing the CONTROL key, then
depressing the desired character key.

The most frequently used commands are specified with the three mouse buttons, sometimes
modified by the CONTROL and SHIFT keyboard keys. The three mouse buttons are named MARK, DRAW,

and SELECT, corresponding to their primary functions.
SIL commands use postfix syntax, in that the user specifies a location on the screen or an object or

group of objects to be operated upon, then issues the command. All commands are carried as soon as
the mouse button or key is depressed, and the only feedback usually given to the user is the
command's effect on the contents of the display.

Selection. For commands that apply to existing objects, only the selected objects are affected.
Selection of a single object is accomplished by moving the mouse so that the cursor lies over some
portion of the object, and depressing SELECT. The selected object is displayed in gray (by changing
alternate pixels in its bit-map representation white), and if any objects were previously selected, they
are deselected and redrawn with solid lines and characters. CONTROL-SELECT is also used to select
objects, but in this case, previously selected objects are not deselected. This allows the user to select a
group of objects as the target of a command. It is also possible to select all objects within a rectangular
area. One comer of the area is marked by moving the cursor to its location and depresssing MARK. The
opposite comer is then located with the cursor and SHIFT-SELECT is depressed. SIL locates all objects
lying completely within the area and selects them.

If an object is inadvertently selected, it may be deselected by pointing at it with the cursor and
depressing CONTROL-SHIFT-SELECT. In all operations involving selection or deselection, when objects
overlap, SIL chooses the object with the smallest perimeter as the target. When an object or group of
objects is selected, the mark and the origin are moved to the upper left comer of the object, for use by
later commands.

Adding Objects to the Display. Lines are added to the display by identifying the locations of the
endpoints. First, the cursor is placed at one endpoint, and MARK is depressed. This places the mark at
the indicated position. Then the cursor is moved to the other endpoint, and DRA w is depressed,
drawing the line. Lines will be vertical if the difference of the endpoint x coordinates is less than the
difference of the y coordinates, and horizontal otherwise. Lines are drawn at the current line width

SIL-A SIMPLE ILLUSTRATOR FOR CAD 483

shown in the status line. The user may change the line width at any time by typing CONTROL-W
followed by a single digit.

When a line is drawn, it becomes the selected object, so that it may be the target of a move or copy
command. Also, when a line is drawn, the mark is moved to the endpoint last indicated by the user.
This allows a path to be drawn by marking the starting point and depressing DRAW once for each line
segment comprising the path.

Text strings are added to the display by positioning the mark (with MARK) and typing the string,
terminated by RETURN, ESC, or by depressing any mouse button. Control characters are provided
during text entry to backspace over characters, words, or the entire string. Text is added in the current
font shown in the status line, and this font can be changed by the user by typing CONTROL-F followed
by a digit or a single letter. A digit indicates the font; a letter indicates an attribute (bold or italic) or
one of 16 colors indicated by a single letter.

When the string is terminated, the mark is moved down by the height of the particular font used.
This amount may be changed to a constant value, allowing text strings to be placed with precise
vertical spacing.

Since commands are control characters, the first character of a string can be identified as such.
When the first character of a string is typed, SIL enters Add Text Mode, and the message "Add Text"
is placed in the status line. While the string is being entered, SIL will accept only commands that
terminate the string, so it is not possible to change the font during the input. Note that Add Text
mode does not violate the principle of modelessness described earlier, since the user does not need to
take explicit action to enter the mode.

Changing the Display. Experience with SIL has shown that users spend considerably more time
modifying existing drawings than creating new ones. To facilitate rapid changes, SIL provides a
number of commands that allow a group of selected objects to be moved, copied, or deleted.

With a frame buffer, moving a large area of the screen is a time-consuming operation, since a large
number of words in storage must be moved, and the source and destination are not generally
word-aligned. For this reason, SIL does not provide the ability to "drag" collections of objects.
Instead, a group of objects are selected, causing the origin to be placed at the upper left corner of the
rectangle that bounds the objects; then the user specifies the new position that the origin should
occupy by pointing to it and depressing MARK; and finally, the move command (CONTROL-X) moves
the objects so that their origin is coincident with the new position of the mark. The origin and the
mark are then interchanged, so that if the user is not satisfied with the new position, an additional
CONTROL-X restores the situation to its original state. This requires three keystrokes per move: one to
select the object, one to indicate its destination, and one to do the move. Because moving is a frequent
operation, an idiom has been supplied to optimize it. Once the desired selection has been made, the
cursor is pointed at the destination, and CONTROL-MARK is depressed. This is equivalent to MARK
followed by CONTROL-X. The only reason for retaining the CONTROL-X command is to provide the
"undo" feature.

The use of a frame buffer for display refresh introduces a problem when it is necessary to move an
object that overlaps another stationary object. The desired effect is that the object should disappear
from its original position and reappear at its new position, and that any overlapping objects should
not be modified during this process. Although it is possible in principle to achieve this effect, it is
computationally expensive, since when the object is being removed from the display, the program
must decide for each of its pixels whether the final value will be white or black, depending on whether
it is also part of an overlapping stationary object. The strategy used in SIL is considerably simpler and
less expensive: When an object is deleted, an area of the display corresponding to the object's
bounding rectangle is cleared, deleting the object. The coordinates of the bounding rectangle are
passed to a background process whose job is to rebuild the screen by redrawing any objects that lie
within the rectangle. The object is then redrawn at its new position. Since the background process
cannot run until the object has been redrawn, the user will see the object at its new position, and then
the area around the old position of the object will be filled in as the rebuilding process runs.

When a group of objects is moved, each member of the group is deleted individually, and the
bounding rectangle passed to the rebuilding process is incrementally expanded to cover the entire set
of objects. When all objects have been removed from the display, they are redrawn at their new
position and the rebuilder runs as described above. This strategy allows the user to see the objects at
their new position rapidly, and keeps the screen consistent. Unless the total area of the object that is
moved is large and there are a large number of overlapping objects, the rebuilding process is usually
not noticeable.

In addition to moving the selected object, SIL will also stretch or shorten any horizontal or vertical
Jines attached to the object, provided that the object is moved only in x or y, respectively. This feature
was provided to stretch and shorten lines connected to components in logic diagrams, and may be
disabled using CONTROL-SHIFT-MARK rather than CONTROL-MARK to move the object.

Copying is similar to moving. The user selects one or more objects, then indicates the new position
of the origin using MARK. The copy command (CONTROL-C) then draws the selected objects at the

484 COMPUTER GRAPHICS

new position. An optimization, CONTROL-DRAW, is equivalent to MARK followed by CONTROL-C. After
the copies are drawn, the original objects are deselected, the copy is selected, and the origin is moved
to the upper left comer of the copy. This allows multiple copies to be made with one depression of
CONTROL-DRAW per copy.

Since deletion is a common operation, two commands are provided for it. The first uses a keyboard
command (CONTROL-D) to delete all selected objects. The second, SHIFT-DRAW, deletes the object at
which the cursor is pointing, and is an abbreviation for SELECT followed by CONTROL-D. When an
object is deleted, the origin is moved to the place it occupied, so that it may be replaced by another
object using SELECT followed by CONTROL-X or CONTROL-C.

When objects are deleted, they are erased from the display but are not lost irrecoverably. Each
deletion causes the selected objects to be placed on a last-in first-out stack, and this stack may be
popped (and the objects restored to the display) by the CONTROL-U (undelete) command. The stack
holds up to five groups of deleted objects; as more objects are deleted, the earlier ones are lost, and the
storage space used by their representations is reclaimed.

Precise Positioning. SIL provides two commands that allow objects to be placed on the display
with high precision. The first provides a "zoom" capability, and is invoked by identifying two opposite
comers of a rectangular area with two successive marks, then typing CONTROL-E (expand). SIL
executes this command by clearing the screen, calculating the integral magnification that will cause the
indicated area to most nearly fill the display, and redrawing the portions of the display that will fit at
this magnification. The magnification chosen is reflected in the status line. A second CONTROL-E
restores the original display. While magnification is in effect, all other commands continue to operate
normally.

The second positioning command provides a limited form of "dragging." It is invoked by selecting
an object, indicating a reference point within the object by moving the origin to the point and
depressing SHIFT-MARK, then typing CONTROL-S. SIL responds by copying the area around the
reference point into the bit map for the hardware cursor, replacing the normal arrow. This patch of the
selected object can then be moved about the display rapidly, and if a move (CONTROL-MARK) or copy
(CONTROL-DRAW) command is issued, the selected object will be moved or copied such that the
reference area in the object exactly overlays the portion of the object in the cursor. The normal arrow
is restored by invoking any command other than move or copy.

Macros. The SIL macro facility allows a number of objects in a drawing to be encapsulated and
subsequently treated as a single character. Macros may be user-defined and specific to a particular
drawing, or they may be library macros. The definitions for user-defined macros are saved as part of
the output file created for the drawing, but since the library macros are used for a number of
drawings, their definitions are stored separately on specially named disk files. Font 4 is reserved for
user-defined macros, and fonts 5 through 9 contain the definitions for library macros. When a
particular library macro character is typed by the user for the first time in Add Text mode, the
appropriate library file is read, and the definition is extracted from the file. Subsequent uses of the
definition do not incur the disk delay.

To define a group of objects as the macro "M," the user selects the objects that are to make up the
macro, and types "CONTROL-LM." SIL responds "Confirm with RETURN," or "Confirm with RETURN
to overwrite" if there is already a macro with name "M." If the user issues the confirmation, the
definition is created, and the original objects are replaced by an instance of the macro.

A macro definition may be modified by breaking an instance of it into its component objects, or
expanding it, using the CONTROL-H command. The objects may then be modified individually, and the
collection may then be redefined as the original macro. The CONTROL-V (view macro definitions)
command puts the names of all existing font 4 macros into the status line, so that the user can
determine which names have been used.

The main use of the SIL library facility is to provide a number of macros for digital integrated
circuits. Library files are ordinary SIL files, distinguished only by their filenames, and the macro
definitions they contain may be modified with SIL in the usual ways. To allow users to determine the
contents of the libraries, a catalog is maintained with each library. This catalog consists of a number
of SIL files showing the macros used for particular logic components, and the characteristics of the
component. Designers keep a hardcopy version of the catalog at hand when using SIL for logic design.

4.7.3 Implementation

SIL is a simple illustrator primarily because of the simplicity of its implementation. Four aspects of SIL
contributed to the simplicity of the implementation:

I. Since a SIL drawing represents a single 8.5 by 11 in. page, the number of objects will be small,
usually between a few hundred and a few thousand. This means that the descriptions of all objects can
be kept in main storage, and that simple linear search can be used to locate a particular object given
its coordinates.

SIL-A SIMPLE ILLUSTRATOR FOR CAD 485

2. Since all SIL objects are rectangular, the routines to locate, clip, and draw objects on the screen
are not complex. In particular, none of these routines require multiplication or division and are
therefore quite fast.

3. By treating all complex objects as characters, it is possible to make use of an Alto machine
instruction, Convert, that 0Rs the bit-map representation of a character into the display bit map. This
increases the speed of these operations considerably over an implementation using load and store
instructions.

4. Since SIL is interactive and runs on a personal machine as opposed to a shared system, there is a
great deal of idle time available. This background idle time is used to simplify some of the operations
required. Two examples are the reconstruction of the user display and reclamation and compaction of
storage. Both of these operations are done in the background, and their implementation is simplified
by not requiring that they be done rapidly.
In the balance of this section, the important features of the SIL implementation are discussed.

Representation of Objects. Each rectangle, background, and character string, whether a visible
part of a drawing or part of a macro definition, is represented in memory by an object descriptor. The
format of an object descriptor is shown in Fig. 5. It contains the coordinates of the object, its type,
color, current state, and, if the object is a text string, the string itself. This information is sufficient to
completely define each object, and is the only source of information about the object used by SIL. The
bit map is reconstructed from the object descriptors when necessary.

The type field of an object descriptor determines whether an object is a rectangle or a string, and if
it is a string, the font and type face to be used to display it. The !(italic) attribute in the object
descriptor is applicable only to text fonts. The state field of the descriptor determines how the object is
to be displayed. Objects with State= 0 are displayed normally. Selected objects have State= 1, and are
shown in gray. Objects with 1 <State< 7 are deleted. Deleted objects are not displayed, and each time
a delete command is issued by the user, the state of all deleted objects is incremented. When the state
becomes 7, the object becomes dead, and the storage it occupies will be reclaimed. When the user
issues an undelete command, the state fields of all deleted objects are decremented, causing the most
recently deleted set of objects to become selected. These objects are then displayed.

Each visible object has a single descriptor, and these descriptors are chained together in a singly
linked list. A new object descriptor is created, added to the head of the list, and displayed each time
the user issues a draw or copy command, or terminates a string in Add Text mode. In addition to
descriptors for visible objects, there are also descriptors for components of macro definitions. Each
macro definition is a separate list, the head of which is an element of an array (the Macro Table)
indexed by the font and character that is the macro name. When a macro is defined by the user, the
descriptors making up the macro are removed from the list of visible items, their coordinates are made
relative to the origin of the macro, and they are chained together starting at the Macro Table entry
corresponding to the font character specified by the user. A single descriptor for the macro is then
added to the visible object list.

A single routine is used to scan convert an object into the bit map. This routine draws rectangles by
oRing into the bit map at the locations determined by the coordinates of the object, converts strings
using the machine's Convert instruction, and converts macros by calling itself recursively for each of
the objects making up the macro definition.

The files produced by SIL are similar in format to the main storage representation. A SIL file
consists of a one-word password that identifies the file as a SIL file, followed by a number of records,
each one representing a single object. The format of the records is the same as that of an object
descriptor, with the exception that the state field is always zero and the link field contains - I if the
record describes a visible object, and contains the (one byte) macro name if the record is part of a
macro definition.

Rebuilding the Screen. When an object is initially added to the display, it is necessary only to
scan convert it at its proper location, but when objects are moved, the situation is more complex. In
this case, it is necessary to redraw any objects that lie within the bounding rectangle of the moved
object, since this area is cleared as part of the move. This is done by a rebuilder routine that is invoked
whenever there are no commands to be processed. The rebuilder is passed the bounding rectangle of
the area to be redrawn, and it traverses the entire chain of visible objects, scan converting any objects
that lie within this area. Each time an object is inspected, the rebuilder checks for new commands, and
processes any that arrive. If a new command modifies the screen before the rebuilder is finished, the
rebuilder is restarted at the head of the visible object list, and the size of the bounding rectangle is
increased to be the smallest area that covers both the original and the new area. This simple technique
works well only because the total number of objects is small and there are excess cycles available. If
this were not the case, a more complex data structure that could rapidly locate all objects lying within
a given area would be necessary.

Similar considerations apply to the problem of determining which objects are desired when the user
makes a selection. SIL must examine the entire visible object list to find the one at the indicated

File:

Password

Object

Object

Object

Object

Object

Object Format:

Link

State I XMin

YMin T
Color I XMax 7 words

Type I I I YMax

String Length (3) I Character1

Character2 I Character3 l
Storage:

0: Global Data

-1K

SIL Code

-15K

Macro Tables -- - - - t t
SIL Data

Object
-12K

Stack

1 !
Display Bitmap

-3:>K

Operating
System Code

64K-1:
-6K

Fig. 5 SIL files, objects, and storage layout.

486

SIL-A SIMPLE ILLUSTRATOR FOR CAD 487

coordinates with the smallest perimeter (if a single item is selected), or to find the set of objects lying
in a specified area (in the case of area selection). For a typical display, the time to do a selection is
much less than a second, but this is only because the total number of objects is small.

Storage Management. The amount of storage required for object descriptors expands and
contracts as objects are added to and deleted from the display. Because of the small amount of main
storage in the Alto, it is important that available space be used efficiently. SIL uses a simple technique
that capitalizes on excess cycles to manage storage.

Storage for object descriptors is allocated from a stack. As objects are deleted, "holes" appear in the
occupied region of the stack. A compacting routine, called only if there are no commands to be
processed and if no screen rebuilding is required, is responsible for eliminating the holes by
compacting storage. Like the screen rebuilder, the storage compactor is incremental. It continually
traverses the occupied region of storage looking for dead descriptors. When it finds one (or more than
one), it copies the first "live" descriptor it finds beyond the dead region down in memory, and
readjusts the link field of the descriptor that points to the one that was moved. This causes the dead
blocks to "bubble" to the top of the stack. Each time a descriptor is examined, a check for a new
command is made so the process is invisible to the user.

4.7.4 SIL APPLICATIONS

The major application of SIL is to produce input for a digital logic design system. Figure 3 shows the
information flow in this system, which is composed of several programs in addition to SIL.

The initial input to the system is a set of SIL drawings showing the desired logic, its interconnec­
tions, the types of all components, and their locations on a standard Stitchweld board. Each SIL file is
processed by Analyze, a program that determines the interconnection of the components by interpret­
ing the SIL files. Analyze produces three output files: The first is a "node list" file in text form
containing a list of the integrated circuits used in the drawing and the pin numbers connected together
by each signal path. The second is a SIL file containing any pin numbers not preassigned by the user.
If the user assigns pin numbers in the original drawing, Analyze will check them for validity;
otherwise, it will assign them from information in the component library file. The SIL file containing
pin numbers is merged with the original drawing using SIL to produce the primary system documenta­
tion. The third file produced by Analyze is a text file describing any syntactic errors discovered during
processing.

A set of node list files describing an entire board are then processed by the Route program. Route
does further checking for unused or multiply used signal names and pins, and produces a wiring list
for the board. Route uses a board description file that specifies the locations of all possible components
on the type of board being used, and minimizes the overall length of the wiring. The wire list file
generated by Route is used to drive a semiautomatic Stitchweld machine that does the actual wiring.

The major limitation of this system is that it does not do automatic component placement. It does
eliminate most of the clerical work associated with logic design, and allows designers to produce all
the documentation for a system with no support staff. Using this system, it has been possible to
design, build, and test prototype boards containing approximately 100 integrated circuits in as little as
2 weeks.

The design system described here was built after SIL, when it was realized that the information in a
SIL file could be interpreted to generate the interconnection information required by a routing
program. SIL itself has no special knowledge of logic design, in contrast to the graphics components of
most design automation systems.

SIL has also been used for a number of general-purpose illustration tasks, such as the preparation of
the illustrations for this section. Many standard office forms have been prepared as SIL files, and are
filled out by individuals using SIL. SIL is also used for preparing charts and tables for reports, and
figures for technical publications. A program that merges several text files into a single file suitable for
printing has been augmented to allow SIL drawings to be placed at arbitrary locations in these
documents, further increasing SIL's utility.

Acknowledgments

A number of individuals have contributed to the success of SIL and the CAD system of which it is a
part. Roger Bates implemented the color printing facility, as well as a number of extensions to the
original SIL. Ron Pellar developed the font shapes used with SIL. Ed McCreight designed and
implemented Route, and Butler Lampson made a number of helpful suggestions for improvements to
the user interface.

